共查询到16条相似文献,搜索用时 62 毫秒
1.
研究表明合理考虑术语之间的关系可以提高检索系统的性能。采用共现分析的方法从文档集合中学习得到术语之间的关系,并应用到结构化文档检索中,提出了一个基于贝叶斯网络的结构化文档检索模型,给出了其拓扑结构、概率估计以及推理过程。实验表明该模型的检索性能要优于没有考虑术语之间关系的模型。 相似文献
2.
3.
4.
提出了一种新的基于贝叶斯网络对XML文档信息进行查询的模型方法.该模型支持针对XML文档信息的结构化查询.基于XML信息查询的特点,利用XML数据集中语词、元素和结构化单元的统计信息对模型的拓扑结构和条件概率进行了学习;结合概率函数的方法,利用模型的概率推理进程对XML文档和结构化查询条件的相关度进行了估算.最后在基于INEX测试集的实验中证明了该方法的有效性和可靠性. 相似文献
5.
6.
各种专业领域中的文档往往具有显著的结构化特征,即一篇文档往往是由具有不同表达功能的相对固定的多个文本字段构成,同时这些字段蕴含了相关的领域知识。针对专业文档的结构化和领域化特征,设计了一种面向结构化领域文档的信息检索模型。在该模型中,首先对领域文档集进行挖掘以构建能够反映领域知识的结构化模型,之后以此为基础设计了结构化文档检索算法来为用户查询返回相关的领域文档。选择一类典型的领域文档——农技处方开展了应用研究,利用一份现实的农技处方文档数据集将提出的方法与传统的信息检索方法进行了实验对比分析,并开发了农技处方检索原型系统。 相似文献
7.
针对传统的信息检索方法无法实现用户查询的语义理解、检索效率低等问题,本文提出基于领域本体进行查询扩展的贝叶斯网络检索模型。该模型首先将用户查询通过领域本体进行语义扩展,然后将扩展后的查询作为证据在贝叶斯网络检索模型中进行传播,进而得到查询结果,实验表明本文提出的贝叶斯网络检索模型能提高检索效率。 相似文献
8.
利用术语相似度将同义词间的相似程度数量化,以此量化关系对用于信息检索的简单贝叶斯网络进行若干改进,构造一个四层贝叶斯网络检索模型。给出新模型的拓扑结构、各层节点详尽的概率估计以及文档检索与推理过程。最后,对新模型进行评估,结果表明该模型可以有效地提高检索性能,在一定程度上实现基于语义的信息检索,这正是目前信息检索发展的必然趋势。 相似文献
9.
10.
基于贝叶斯网络的无结构化P2P资源搜索方法 总被引:7,自引:0,他引:7
资源搜索是P2P网络基本功能及核心问题,关系到P2P网络可用性及扩展能力.尽管已提出许多无结构化P2P搜索方法,但复杂组织方式、较高搜索代价及过多维护影响其可用性.提出一个全分布无结构化P2P网络搜索方法BNS.该方法从节点自身兴趣特性出发,利用节点上资源之间语义相关,应用贝叶斯网络建立推理模型,根据相关资源历史信息进行推理,采用概率方法,将搜索导向与目标相关的节点,提高搜索性能.实验表明,该方法能够有效地提高搜索性能,消耗较少带宽且维护简单,对P2P动态变化特性具有良好适应能力. 相似文献
11.
文档是有一定逻辑结构的,标题、章节、段落等这些概念是文档的内在逻辑.不同的用户对文档的检索,有不同的需求,检索系统如何提供有意义的信息,一直是研究的中心任务.结合文档的结构和内容,对结构化文件的检索,提出了一种新的计算相似度的方法.这种方法可以提供多粒度的文档内容的检索,包括从单词、短语到段落或者章节.基于这种方法实现了一个问题回答系统,测试集是微软的百科全书Encarta,通过与传统方法实验比较,证明通过这种方法检索的文章片断更合理、更有效. 相似文献
12.
检索一篇文档在其他语言中的译文对于双语平行语料库的建立是一件很有意义的工作。本文提出一种改进的跨语言相似文档检索算法,该算法使用双语词典或统计翻译模型作为双语知识库,查找两篇文档的共同翻译词对,把翻译词对的权重作为一种特征来进行相似度计算,用Dice方法的改进算法计算双语文档的相似度。在实验中,统计检索文档的译文排在检索结果前 N位的总次数来评价算法的性能,并使用了两个噪音数据集来评价算法的有效性。实验表明,在噪音数据干扰比较大的情况下,译文排在检索结果前5位的译文结果接近90%。实验证明,翻译词对的权重对于相似度计算有很大帮助,本算法可以有效地发现一种语言书写的文档在另一种语言中的译稿。 相似文献
13.
查询扩展是提高检索效率的有效方法.但是许多查询扩展方法中扩展词的选择没有充分考虑词项之间以及词项与文档之间的相关性,这样可能在查询扩展时加入太多不相关信息降低检索的性能.通过对文档间相关性和词间相关性的计算,把文档和词关联起来构建Markov网络检索模型,然后根据词项子空间和文档子空间的映射关系提取词团,将提取的词团信息用于查询扩展,使得查询扩展的内容更为相关.实验表明:基于文档团依赖的Markov检索模型能有效地提高检索效果. 相似文献
14.
A. Tuerk S.E. Johnson P. Jourlin K. Spärck Jones P.C. Woodland 《International Journal of Speech Technology》2001,4(3-4):241-250
The Cambridge University Multimedia Document Retrieval (CU-MDR) Demo System is a web-based application that allows the user to query a database of radio broadcasts that are available on the Internet. The audio from several radio stations is downloaded and transcribed automatically. This gives a collection of text and audio documents that can be searched by a user. The paper describes how speech recognition and information retrieval techniques are combined in the CU-MDR Demo System and shows how the user can interact with it. 相似文献
15.
16.