首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
一种能够适应概念漂移变化的数据流分类方法   总被引:1,自引:0,他引:1  
目前多数的数据流分类方法都是基于数据稳定分布这一假设,忽略了真实数据在一段时间内会发生潜在概念性的变化,这可能会降低分类模型的预测精度.针对数据流的特性,提出一种能够识别并适应概念漂移发生的在线分类算法,实验表明它能根据目前概念漂移的状况,自动地调整训练窗口和模型重建期间新样本的个数.  相似文献   

2.
传统的基于端口的流量分类方法和基于DPI技术的流量分类方法由于P2P技术和加密技术的流行而开始失效。基于网络流特征及机器学习的流量分类方法因为克服了上述弊端而成为了流量分类领域的研究热点。实际网络环境中,“大象流”和“老鼠流”在数量和传输字节量等方面存在着严重的不平衡,降低了基于机器学习流量分类方法的实际分类效果。针对...  相似文献   

3.
网络流量分类与应用识别的研究*   总被引:1,自引:0,他引:1  
首先介绍了网络流量分析的不同层次及机器学习领域的相关知识,分析了采用端口号映射及有效负载分析的方法进行流量分类与应用识别存在的问题;然后从网络流量的统计特征出发,重点介绍了机器学习中聚类和分类的方法在流量分类的应用和问题;最后基于聚类和分类在流量分类中的效用,指出了未来的研究趋势。  相似文献   

4.
针对传统的基于传输层端口和基于特征码的流量分类技术准确率低、应用范围有限等缺点,提出了使用树扩展的贝叶斯分类器的方法,该方法利用网络流量的统计属性和基于统计理论的贝叶斯方法构建分类模型,并利用该模型对未知流量进行分类。实验分析了不同权值、不同规模的数据集对其性能的影响,并与NB、C4.5算法做了比较。实验结果表明,该方法具有较好的分类性能和较高的分类准确率。  相似文献   

5.
一种基于双层窗口的概念漂移数据流分类算法   总被引:1,自引:0,他引:1  
数据流中概念漂移问题的研究已成为近年来流数据挖掘领域的研究热点之一. 已有的研究工作多依据单窗口中错误率的变化来检测概念漂移,难以适应不同类型的漂移. 为此, 本文提出一种新的基于双层窗口机制的数据流分类算法(Double-windows-based classification algorithm for concept drifting data streams, DWCDS),该算法采用随机决策树模型构建集成分类器, 利用双层窗口机制周期性地检测滑动窗口中流数据分布的变化,并动态地更新模型以适应概念漂移. 分析与实验结果表明: 该算法可以快速有效地跟踪检测含噪数据流中的概念漂移,且抗噪性能与分类精度显著提高.  相似文献   

6.
针对网络流量存在概念漂移、不同应用类型数据流偏态分布等特性, 提出了基于Hoeffding决策树的自适应分级滑动窗决策树的网络流量识别算法。该算法根据节点信息增益率检测概念漂移、动态调整概念漂移检测窗口及不同类型训练样本集窗口, 实现对不同速率概念漂移的自适应分类和决策树更新。实验结果显示新算法对劣势频繁漂移的应用类型的识别准确率与batch C4. 5算法接近, 比CVFDT算法提高约20%, 可以获得更加均衡的不同应用类型分类准确度。  相似文献   

7.
基于自适应快速决策树的不确定数据流概念漂移分类算法   总被引:1,自引:0,他引:1  

由于不确定数据流中一般隐藏着概念漂移问题, 对其进行有效分类存在着很多困难. 为此, 提出一种基于自适应快速决策树的算法. 该算法基于一般决策树算法的原理, 以自适应学习规则计算信息增益, 以无标记情景学习拆分原理检测不确定数据流中的不确定数值属性, 通过自适应快速决策树节点的拆分方法将不确定数值属性转化为不确定分类属性, 以实现对不确定数据流的有效分类, 进而有效检测到其中隐含的概念漂移现象. 仿真结果验证了所提出方法的可靠性.

  相似文献   

8.
一种自适应局部概念漂移的数据流分类算法   总被引:1,自引:0,他引:1  
本文基于DB2算法提出一个能实时检测局部概念漂移,并随之自适应调整的数据流分类算法IncreDB2.该算法动态增量维护一个层次分类树.当局部概念漂移出现时,IncreDB2不是重新构造一个全新的分类树,而是仅更新漂移所影响到的局部结点,具有较高的时间效率.实验结果表明了该算法的正确性和有效性.  相似文献   

9.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的.  相似文献   

10.
针对流量分类问题中,传统单一的机器学习分类算法存在分类准确率难以提升和对网络环境变化适应能力不足的缺点,提出一种多分类器集成流量分类方法。该方法结合不同算法分类器的特点,使用多数投票和实例选择集成方法实现流量分类。对比实验表明,该方法在分类准确率和算法泛化性能上的表现均有所提升,对环境变化适应能力增强。但值得注意的是,该算法比独立分类法从实现复杂度和实际运行的时间复杂度均有所增加。  相似文献   

11.
胡婷  王勇  陶晓玲 《计算机工程》2011,37(6):104-106
针对目前基于端口号匹配和特征码识别的流量分类方法准确率低、应用范围受限等问题,提出一种基于有监督的自组织映射(SSOM)的网络流量分类方法。该方法使用已标注类别的网络流量训练集,通过改变自组织映射(SOM)训练过程中的权值调整规则,使输出层中获胜神经元的选择更容易,各类别之间划分更清晰,从而提高分类性能。实验结果表明,SSOM的分辨率及拓扑连续性均优于SOM,对网络流量分类具有更高的准确率。  相似文献   

12.
网络流量的决策树分类   总被引:1,自引:1,他引:1  
应用识别与流量分类是网络管理、安全、研究等相关事务的必要前提.随着网络的高速发展以及各种新型应用的不断涌现,基于分组传输层端口号和深度分组解析的分类技术难以满足需求.本文验证网络流量的统计特性可以有效地区分不同应用,提出一种基于C4.5决策树分类器的有监督网络流量分类方法,讨论boosting增强方法和特征选择两种改进.实验结果表明,C4.5分类器的训练复杂度适中,准确率高且分类速度快;增强方法可以进一步提高分类器的准确率,代价是训练时间大幅提高和分类时间稍微减慢;特征选择算法则提高分类速度而稍微降低准确率.  相似文献   

13.
空间分类规则挖掘的一种决策树算法   总被引:3,自引:0,他引:3  
蔡之华  李宏  胡军 《计算机工程》2003,29(11):74-75,118
空间分类规则挖掘是空间数据挖掘研究的一个重要领域。文章提出一个空间分类规则挖掘问题,并为解决该问题介绍了一种空间分类规则挖掘的决策树算法。  相似文献   

14.
分类决策树的归纳是一种重要的数据挖掘算法。本文重点介绍了两种基于并行算法的分类决策树的构造算法,并对它们的适用性及特点作了分析。  相似文献   

15.
传统关联规则挖掘在面临分类决策问题时,易出现非频繁规则遗漏、预测精度不高的问题。为得到正确合理且更为完整的规则,提出了一种改进方法 DT-AR(decision tree-association rule algorithm),利用决策树剪枝策略对关联规则集进行补充。该方法利用FP-Growth(frequent pattern growth)算法得到关联规则集,利用C4.5算法构建后剪枝决策树并提取分类规则,在进行置信度迭代筛选后与关联规则集取并集修正,利用置信度作为权重系数采取投票法进行分类。实验结果表明,与传统关联规则挖掘和决策树剪枝方法相比,该方法得到的规则在数据集分类结果上更准确。  相似文献   

16.
针对传统机器学习算法对于流量分类的瓶颈问题,提出基于一维卷积神经网络模型的应用程序流量分类算法。将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。设计了一种新的一维卷积神经网络模型,从网络结构、超参数空间以及参数优化方面入手构造了最优分类模型。该模型通过卷积层自主学习数据特征,解决了传统基于机器学习的流量分类算法中特征选择问题。通过网络公开数据集进行模型测试,相比于传统的一维卷积神经网络模型,所设计的神经网络模型的分类准确率提升了16.4%,总分类时间节省了71.48%。另外在类精度、召回率以及[F1]分数方面都有较好的提升。  相似文献   

17.
针对当前分类算法还存在的诸如伸缩性不强、可调性差、缺乏全局优化能力等问题,该文提出了一种有效的用于数据挖掘分类任务的方法--基于决策树的协同进化分类算法.实验结果表明该方法获得了更高的预测准确率,产生了更小的规则集.  相似文献   

18.
针对当前分类算法还存在的诸如伸缩性不强、可调性差、缺乏全局优化能力等问题,该文提出了一种有效的用于数据挖掘分类任务的方法——基于决策树的协同进化分类算法。实验结果表明该方法获得了更高的预测准确率,产生了更小的规则集。  相似文献   

19.
人乳头瘤病毒(HPV)是导致宫颈癌的一大要素。利用Weka这个数据挖掘平台,对中国肿瘤防治数据库山西子宫颈癌医学数据集进行C4.5决策树分类研究,从决策树中提取了一些比较有意义的规则,发现一些容易导致感染HPV病毒的因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号