共查询到20条相似文献,搜索用时 78 毫秒
1.
粒子群优化算法是一种基于群体智能理论的全局优化算法,通过群体中粒子间的合作与竞争实现对问题空间的高效搜索。针对算法后期收敛速度较慢、易陷入局部最优的缺点,提出了一种混合粒子群算法。该算法通过改变种群初始化方法,引入交叉和变异机制等措施改善基本粒子群算法的性能。数值试验结果表明,改进型粒子群算法在提高全局寻优能力和加快收敛速度等方面均有良好的表现。 相似文献
2.
3.
针对粒子群优化(PSO)算法容易早熟收敛、在进化后期收敛精度低的缺点,提出了一种基于多策略协同作用的粒子群优化(MSPSO)算法。首先,设定一个概率阈值为0.3,在粒子迭代过程中,如果随机生成的概率值小于阈值,则采用对当前种群中的最优个体进行反向学习并生成其反向解,以提高算法的收敛速度和收敛精度;否则,算法执行对粒子的位置进行高斯变异策略,以增强种群的多样性;其次,提出一种将柯西分布的比例参数进行线性递减的柯西变异策略,能够产生更好的解引导粒子向最优解空间运动;最后,在8个标准测试函数上进行仿真测试,MSPSO算法在Rosenbrock、Schwefel's P2.22、Rotated Ackley、Quadric Noise、Ackley函数上收敛的平均值分别为1.68E+01、2.36E-283、8.88E-16、2.78E-05、8.88E-16,在Sphere、Griewank和Rastrigin函数上收敛达到最优解0,优于高斯扰动粒子群优化(GDPSO)算法、基于柯西变异的反向学习粒子群优化(GOPSO)算法。结果表明,所提出的算法收敛精度高,能避免粒子陷入局部最优。 相似文献
4.
为克服粒子群优化算法容易陷入局部最优解的问题,提出一种带极值抖动的变尺度粒子群优化算法,该算法在粒子进化过程中动态调整学习因子,改善粒子的搜索性能,利用极值抖动方法帮助粒子逃离局部最优解,采用变尺度方法逐步缩小算法的优化范围,提高算法搜索密度。实验表明,该算法对9个具有代表性的基准测试函数,其优化效率及优化精度均优于以往提出的典型粒子群优化改进算法。 相似文献
5.
6.
7.
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。 相似文献
8.
基于粒子群和模拟退火算法的混合算法研究 总被引:2,自引:0,他引:2
在标准粒子群优化算法的基础上给出了一种改进策略,利用混沌变量的随机性、遍历性、规律性对粒子群进行初始化选择。同时为了增加粒子多样性又不流失适值较好的粒子,在一定的周期内对所有粒子重新进行有选择的初始化,并对除了种群最优之外对应的所有个体最优变异。计算结果表明,改进的粒子群算法提高了收敛精度和速度,但是个别函数寻优失败。将改进的粒子群算法结合模拟退火算法再次计算了测试函数,结果表明,改进的混合算法可以达到目标函数的全局最优点。 相似文献
9.
针对锌电解过程能耗过高的情况,研究其能耗优化问题.根据电力部门实行的分时计价政策,建立以全天锌电解过程电能消耗和总用电费用为目标的锌电解过程多目标优化模型.提出一种带加速度调整的粒子群优化算法,当粒子陷入局部最优时,通过加速度策略增强种群速度,使算法获得持续搜索的能力,有效克服早熟收敛;并和Powell算法相结合构成新的混合粒子群算法,将粒子群算法的全局搜索能力与Powell算法的局部寻优能力有机结合起来.最后将该混合粒子群算法应用于所建优化模型的求解,获得优化生产方案.仿真结果证明了该算法的有效性.工业应用效果表明,按所得优化方案组织生产降低了电能消耗,减少了用电费用. 相似文献
10.
11.
12.
在分析粒子群优化算法(PSO)和采用捕鱼策略的优化方法(FSOA)存在不足的基础上,提出一种将PSO融入捕鱼策略中的优化算法。该算法要求渔夫在打渔活动中采用灵活机动的多点随机抛投鱼网策略。将该优化算法用于解决三个典型的带约束的函数优化问题,优化实验仿真结果表明,该方法具有收敛速度快、优化精度高、稳定性好的特点,具有较好的全局寻优能力。 相似文献
13.
14.
15.
16.
Web文档聚类是web数据挖掘的重要任务之一,针对Web文档向量空间的高维性与数据聚类问题的最优化性质,采用LDA对文档向量空间进行降维,提出运用混合优化算法GA_PSO在此低维空间进行寻优,来发现Web文档集的最优簇结构.通过在真实数据集20Newsgroups的实验,结果表明我们的方法具有良好的聚类有效性,能较完全和准确地将主题相关的Web文档聚成一类. 相似文献
17.
18.
针对遗传算法收敛速度慢且易于陷入局部最优,而微粒群算法存在早熟的现象,提出了一种多粒子群协同进化算法,在多个粒子群协同进化的同时,通过构建基因库,使较劣的粒子根据基因库进行遗传操作,用4个基准函数进行实验表明,算法MPSOE3性能明显优于基本PSO算法,最后对该算法进行了推广,给出了一种基于计算智能的多群协同进化模型。 相似文献
19.
20.
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献