首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于交叉变异的混合粒子群优化算法   总被引:4,自引:2,他引:4       下载免费PDF全文
粒子群优化算法是一种基于群体智能理论的全局优化算法,通过群体中粒子间的合作与竞争实现对问题空间的高效搜索。针对算法后期收敛速度较慢、易陷入局部最优的缺点,提出了一种混合粒子群算法。该算法通过改变种群初始化方法,引入交叉和变异机制等措施改善基本粒子群算法的性能。数值试验结果表明,改进型粒子群算法在提高全局寻优能力和加快收敛速度等方面均有良好的表现。  相似文献   

2.
混合粒子群优化算法研究   总被引:5,自引:0,他引:5  
提出将Hooke Jeeves模式搜索方法嵌入粒子群优化算法中,以此构建混合粒子群优化算法.此外,在搜索过程中还加入变异操作来增加种群多样性,以避免早熟收敛.其中,局部搜索增加了算法的开发能力,而变异操作提高了算法的探测能力.探测与开发的折中则通过两个域值变量来完成.大量的测试函数研究表明,混合粒子群优化算法局部搜索能力有显著提高,且搜索到全局最优的概率更高.  相似文献   

3.
李俊  汪冲  李波  方国康 《计算机应用》2016,36(3):681-686
针对粒子群优化(PSO)算法容易早熟收敛、在进化后期收敛精度低的缺点,提出了一种基于多策略协同作用的粒子群优化(MSPSO)算法。首先,设定一个概率阈值为0.3,在粒子迭代过程中,如果随机生成的概率值小于阈值,则采用对当前种群中的最优个体进行反向学习并生成其反向解,以提高算法的收敛速度和收敛精度;否则,算法执行对粒子的位置进行高斯变异策略,以增强种群的多样性;其次,提出一种将柯西分布的比例参数进行线性递减的柯西变异策略,能够产生更好的解引导粒子向最优解空间运动;最后,在8个标准测试函数上进行仿真测试,MSPSO算法在Rosenbrock、Schwefel's P2.22、Rotated Ackley、Quadric Noise、Ackley函数上收敛的平均值分别为1.68E+01、2.36E-283、8.88E-16、2.78E-05、8.88E-16,在Sphere、Griewank和Rastrigin函数上收敛达到最优解0,优于高斯扰动粒子群优化(GDPSO)算法、基于柯西变异的反向学习粒子群优化(GOPSO)算法。结果表明,所提出的算法收敛精度高,能避免粒子陷入局部最优。  相似文献   

4.
为克服粒子群优化算法容易陷入局部最优解的问题,提出一种带极值抖动的变尺度粒子群优化算法,该算法在粒子进化过程中动态调整学习因子,改善粒子的搜索性能,利用极值抖动方法帮助粒子逃离局部最优解,采用变尺度方法逐步缩小算法的优化范围,提高算法搜索密度。实验表明,该算法对9个具有代表性的基准测试函数,其优化效率及优化精度均优于以往提出的典型粒子群优化改进算法。  相似文献   

5.
针对非线性优化问题讨论一种基于混合信息的粒子群优化算法,该算法考虑了最优个体和最差个体获取信息,结合自适应变异算子确定下一步搜索方向。自适应变异依据适应值大小调整速度惯性因子、改变搜索方向。仿真实验结果表明,新的算法收敛,具有很高的搜索效率和求解精度。  相似文献   

6.
嵌入局部一维搜索技术的混合粒子群优化算法*   总被引:1,自引:1,他引:0  
通过将粒子群优化算法(PSO)与经典局部一维搜索技术相结合,提出一种嵌入局部一维搜索技术的混合粒子群优化算法(LLS-PSO)。该算法在基本粒子群优化算法中引入一维搜索技术,选取最优粒子进行局部一维搜索,增强了在最优点附近的局部搜索能力,以加快算法的收敛速度。对三个经典复杂优化问题进行数值实验,并与基本PSO算法进行比较。实验分析和结果表明,LLS-PSO具有更好的优化性能。  相似文献   

7.
余伟伟  谢承旺 《计算机科学》2018,45(Z6):120-123
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。  相似文献   

8.
基于粒子群和模拟退火算法的混合算法研究   总被引:2,自引:0,他引:2  
在标准粒子群优化算法的基础上给出了一种改进策略,利用混沌变量的随机性、遍历性、规律性对粒子群进行初始化选择。同时为了增加粒子多样性又不流失适值较好的粒子,在一定的周期内对所有粒子重新进行有选择的初始化,并对除了种群最优之外对应的所有个体最优变异。计算结果表明,改进的粒子群算法提高了收敛精度和速度,但是个别函数寻优失败。将改进的粒子群算法结合模拟退火算法再次计算了测试函数,结果表明,改进的混合算法可以达到目标函数的全局最优点。  相似文献   

9.
针对锌电解过程能耗过高的情况,研究其能耗优化问题.根据电力部门实行的分时计价政策,建立以全天锌电解过程电能消耗和总用电费用为目标的锌电解过程多目标优化模型.提出一种带加速度调整的粒子群优化算法,当粒子陷入局部最优时,通过加速度策略增强种群速度,使算法获得持续搜索的能力,有效克服早熟收敛;并和Powell算法相结合构成新的混合粒子群算法,将粒子群算法的全局搜索能力与Powell算法的局部寻优能力有机结合起来.最后将该混合粒子群算法应用于所建优化模型的求解,获得优化生产方案.仿真结果证明了该算法的有效性.工业应用效果表明,按所得优化方案组织生产降低了电能消耗,减少了用电费用.  相似文献   

10.
针对传统粒子群算法易陷入局部最优解、收敛速度慢的缺点,提出了柯西粒子群算法,并首次将其应用于电力系统无功优化问题.柯西粒子群算法是基于柯西分布的期望和方差均不存在的原理,对每一代粒子的全局极值进行柯西变异,以此来增加种群的多样性,扩大全局最优粒子的搜索区域,以尽快获得适应度更优的个体,从而可以避免算法陷入局部最优解,同...  相似文献   

11.
PSO和AFSA混合优化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
结合粒子群优化(PSO)算法和人工鱼群算法(AFSA)的优势,提出一种PSO-AFSA混合算法。将种群分为2个子群体,在每次迭代中,一个子群体利用PSO算法进化,另一个子群体利用AFSA进化,2个算法共享整个种群极值信息。通过混合算法对5个标准函数进行实验,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。  相似文献   

12.
PSO与捕鱼策略相结合的优化方法   总被引:1,自引:2,他引:1       下载免费PDF全文
在分析粒子群优化算法(PSO)和采用捕鱼策略的优化方法(FSOA)存在不足的基础上,提出一种将PSO融入捕鱼策略中的优化算法。该算法要求渔夫在打渔活动中采用灵活机动的多点随机抛投鱼网策略。将该优化算法用于解决三个典型的带约束的函数优化问题,优化实验仿真结果表明,该方法具有收敛速度快、优化精度高、稳定性好的特点,具有较好的全局寻优能力。  相似文献   

13.
基于改进PSO和DE的混合算法   总被引:1,自引:2,他引:1       下载免费PDF全文
研究粒子群优化(PSO)算法和差分进化(DE)算法的优缺点,通过改进PSO算法并与DE算法混合,得到一种双种群的新型混合全局优化算法。经过对5个标准测试函数的大量实验计算表明,该算法能有效克服PSO算法和DE算法的缺陷,使寻优精度有较大改进,在高维情况下表现更加突出。  相似文献   

14.
基于服务质量的语义Web服务发现方法存在未成熟收敛以及Pareto集分布不均等问题。为此,在引入基于阈值的粒子比较准则、拥挤距离函数和合力变异算子的基础上,给出一种基于混合粒子群优化算法的语义Web服务发现方法。实验结果表明,该方法具有较高的匹配度和查准率。  相似文献   

15.
基于改进PSO算法的WSN覆盖优化方法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出基于概率测量模型的改进粒子群优化方法,以网络有效覆盖率为优化目标,通过改进粒子群算法实现无线传感器网络的覆盖控制。分析传感半径以及离散化栅格点数对覆盖性能的影响。仿真实验表明,利用改进粒子群优化方法的有效覆盖率达到88.22%,证明了该方法的有效性。  相似文献   

16.
Web文档聚类是web数据挖掘的重要任务之一,针对Web文档向量空间的高维性与数据聚类问题的最优化性质,采用LDA对文档向量空间进行降维,提出运用混合优化算法GA_PSO在此低维空间进行寻优,来发现Web文档集的最优簇结构.通过在真实数据集20Newsgroups的实验,结果表明我们的方法具有良好的聚类有效性,能较完全和准确地将主题相关的Web文档聚成一类.  相似文献   

17.
针对标准粒子群算法的种群多样性丧失和算法早熟收敛问题,借鉴自然界中群居动物个体行为的独立性特征,提出粒子的个体状态概念,给出一种基于微粒个体状态和状态迁移的粒子群优化算法。对典型函数测试结果的比较表明,改进后算法的寻优能力明显高于标准粒子群算法。与其他改进算法相比,该算法的寻优能力也较强。  相似文献   

18.
多粒子群协同进化算法   总被引:10,自引:1,他引:10       下载免费PDF全文
针对遗传算法收敛速度慢且易于陷入局部最优,而微粒群算法存在早熟的现象,提出了一种多粒子群协同进化算法,在多个粒子群协同进化的同时,通过构建基因库,使较劣的粒子根据基因库进行遗传操作,用4个基准函数进行实验表明,算法MPSOE3性能明显优于基本PSO算法,最后对该算法进行了推广,给出了一种基于计算智能的多群协同进化模型。  相似文献   

19.
邵增珍  王洪国  刘弘  赵学臣 《计算机工程》2011,37(21):185-187,193
为提高PSO算法的搜索能力,提出一种协同粒子群算法CPSO-ADS。引入种群分布熵及群落差异度评价,用以有效初始化群落。给出趋向向量修正粒子的位置向量,提高算法收敛速度。运用占优子空间概念,通过评价子空间搜索价值确定种群的迁移方向。实验结果表明,该算法搜索性能稳定,能以大概率收敛到全局最优。  相似文献   

20.
带自适应变异的量子粒子群优化算法   总被引:6,自引:0,他引:6       下载免费PDF全文
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号