共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
粒子群算法及其在布局优化中的应用 总被引:3,自引:0,他引:3
复杂工程布局(如卫星舱布局)方案设计问题,在理论上属带性能约束的布局优化问题(NPC问题),很难求解。论文以卫星舱布局为例,将粒子群算法(PSO)应用于布局问题,构造此类问题的粒子表达方法,建立了此类问题的粒子群算法。文中通过3个算例(其中一个为已知最优解的算例)的数值计算,验证了该算法的可行性和有效性。 相似文献
3.
为了让多目标粒子群优化算法在运行过程中保持粒子的多样性,提出了一种初始化方法和动态多粒子群协作的多目标优化算法。根据粒子群在决策空间中的分布情况动态增加或者减少粒子群数量;为避免粒子收敛速度过快,改进了决定粒子飞行速度的因素,速度值依赖于粒子当前速度惯性、粒子最优值,群最优值和所有群最优值。用五个测试函数对算法进行了测试并与多目标粒子群优化进行了比较,测试结果表明提出的算法优于多目标粒子群优化算法。 相似文献
4.
基于竞争与拉伸技术的粒子群算法 总被引:2,自引:0,他引:2
为了避免局部最优与收敛速度慢的问题,在粒子群算法中引入"竞争"与"拉伸"技术,提出一种新的粒子群算法--竞争.拉伸粒子群算法.用3个基准函数对标准粒子群算法、局域粒子群算法、提出的新算法等同时进行测试,对比结果表明,提出的算法不仅具有较高的收敛速度,而且能有效地进行全局搜索. 相似文献
5.
6.
针对粒子群优化算法(PSO)在寻优进程中的缺陷,提出一种融合随机逼近算法的粒子群优化算法,该算法选择合适时机将随机逼近算法融入粒子群优化算法维持种群的多样性,并且在算法寻优进程中充分利用已有的计算资源提高算法寻优效率,最后通过典型标准函数数值实验表明,改进后的粒子群优化算法寻优速度快、精度高、具较好的稳定性。 相似文献
7.
张云明 《计算机工程与科学》2011,33(9):95
粒子群优化算法(PSO)是一种基于群体智能的优化算法。本文在介绍PSO算法基本原理和流程的基础上,分析了该算法在处理一些复杂问题时容易出现的早熟收敛、收敛效率低和精度不高等问题,提出了一种基于新变异算子的改进粒子群优化算法(NMPSO)。NMPSO算法将产生的变异粒子与当前粒子进行优劣比较,选择较优的粒子,增强了种群的多样性,有效地避免算法收敛早熟。用5个常用基准测试函数对两种算法进行对比实验,结果表明:新提出的NMPSO算法增强了全局搜索能力,提高了收敛速度和收敛精度。 相似文献
8.
为提高粒子群优化(Particle Swarm optimization,PSO)算法的收敛精精度与速度,提出了一种基于竞争策略的粒子群优化算法.算法通过对两粒子相似度的判定,来决定是否对粒子进行变换操作,能够提高粒子的多样性,避免局部最优,提高了收敛精度,片且当两个粒子被判定为同一个粒子时,根据适者生存的思想,适应度较优的粒子保留下来,适应度较差的粒子则需进行高斯变异变换,在保证粒子多样性的基础上减少了运算量,提高了收敛速度.并且通过多峰函数(Achley函数、Schaffer函数、Grienwank函数)验证,结果表明,改进后的粒子群优化算法在收敛精度与收敛速度方面都优于基本的粒子群优化算法. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
17.