首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
新的全局-局部最优最小值粒子群优化算法   总被引:1,自引:0,他引:1  
为了提高粒子群优化算法的收敛速度,克服陷入局部最优的缺点,在全局-局部最优粒子群优化算法的基础上,提出了一种新的改进粒子群优化算法——全局-局部最优最小值粒子群优化算法.该算法把惯性权重和学习因子分别通过结合全局和局部最优最小值来进行改写,速度更新公式也做了相应的简化.仿真实验表明该算法在收敛速度和寻优质量上都优于基于LDIW策略改进的粒子群算法和全局-局部最优粒子群算法.  相似文献   

2.
粒子群算法及其在布局优化中的应用   总被引:3,自引:0,他引:3  
复杂工程布局(如卫星舱布局)方案设计问题,在理论上属带性能约束的布局优化问题(NPC问题),很难求解。论文以卫星舱布局为例,将粒子群算法(PSO)应用于布局问题,构造此类问题的粒子表达方法,建立了此类问题的粒子群算法。文中通过3个算例(其中一个为已知最优解的算例)的数值计算,验证了该算法的可行性和有效性。  相似文献   

3.
刘彬  张仁津 《计算机应用》2013,33(12):3375-3379
为了让多目标粒子群优化算法在运行过程中保持粒子的多样性,提出了一种初始化方法和动态多粒子群协作的多目标优化算法。根据粒子群在决策空间中的分布情况动态增加或者减少粒子群数量;为避免粒子收敛速度过快,改进了决定粒子飞行速度的因素,速度值依赖于粒子当前速度惯性、粒子最优值,群最优值和所有群最优值。用五个测试函数对算法进行了测试并与多目标粒子群优化进行了比较,测试结果表明提出的算法优于多目标粒子群优化算法。  相似文献   

4.
基于竞争与拉伸技术的粒子群算法   总被引:2,自引:0,他引:2  
为了避免局部最优与收敛速度慢的问题,在粒子群算法中引入"竞争"与"拉伸"技术,提出一种新的粒子群算法--竞争.拉伸粒子群算法.用3个基准函数对标准粒子群算法、局域粒子群算法、提出的新算法等同时进行测试,对比结果表明,提出的算法不仅具有较高的收敛速度,而且能有效地进行全局搜索.  相似文献   

5.
针对标准粒子群算法的种群多样性丧失和算法早熟收敛问题,借鉴自然界中群居动物个体行为的独立性特征,提出粒子的个体状态概念,给出一种基于微粒个体状态和状态迁移的粒子群优化算法。对典型函数测试结果的比较表明,改进后算法的寻优能力明显高于标准粒子群算法。与其他改进算法相比,该算法的寻优能力也较强。  相似文献   

6.
针对粒子群优化算法(PSO)在寻优进程中的缺陷,提出一种融合随机逼近算法的粒子群优化算法,该算法选择合适时机将随机逼近算法融入粒子群优化算法维持种群的多样性,并且在算法寻优进程中充分利用已有的计算资源提高算法寻优效率,最后通过典型标准函数数值实验表明,改进后的粒子群优化算法寻优速度快、精度高、具较好的稳定性。  相似文献   

7.
粒子群优化算法(PSO)是一种基于群体智能的优化算法。本文在介绍PSO算法基本原理和流程的基础上,分析了该算法在处理一些复杂问题时容易出现的早熟收敛、收敛效率低和精度不高等问题,提出了一种基于新变异算子的改进粒子群优化算法(NMPSO)。NMPSO算法将产生的变异粒子与当前粒子进行优劣比较,选择较优的粒子,增强了种群的多样性,有效地避免算法收敛早熟。用5个常用基准测试函数对两种算法进行对比实验,结果表明:新提出的NMPSO算法增强了全局搜索能力,提高了收敛速度和收敛精度。  相似文献   

8.
为提高粒子群优化(Particle Swarm optimization,PSO)算法的收敛精精度与速度,提出了一种基于竞争策略的粒子群优化算法.算法通过对两粒子相似度的判定,来决定是否对粒子进行变换操作,能够提高粒子的多样性,避免局部最优,提高了收敛精度,片且当两个粒子被判定为同一个粒子时,根据适者生存的思想,适应度较优的粒子保留下来,适应度较差的粒子则需进行高斯变异变换,在保证粒子多样性的基础上减少了运算量,提高了收敛速度.并且通过多峰函数(Achley函数、Schaffer函数、Grienwank函数)验证,结果表明,改进后的粒子群优化算法在收敛精度与收敛速度方面都优于基本的粒子群优化算法.  相似文献   

9.
分层粒子群优化算法   总被引:1,自引:2,他引:1       下载免费PDF全文
马翠  周先东  杨大地 《计算机工程》2009,35(20):194-196
针对粒子群优化算法存在进化后期局部搜索能力不强、收敛速度变慢的问题,提出一种分层粒子群优化算法。利用标准粒子群优化算法在整个搜索空间内进行全局搜索,由全局搜索获得的较优个体产生局部搜索区域,在局部区域内进行进一步搜索。为避免陷入局部最优,采用动态调整局部搜索区域的策略,保持算法的全局收敛性。通过典型测试函数计算表明,该算法的收敛速度和局部搜索能力有明显改善。  相似文献   

10.
为了寻找复杂多峰函数的全局最优解,在标准粒子群优化算法的基础上,提出一种基于不同行为的两分群交换粒子群优化算法。该算法将微粒分成大小相同的2个种群,不同种群采用不同进化模型。利用不同进化模型具有不同进化行为的特点,两分群相互影响并促进。该方法可以保持种群多样性,降低陷入局部极值的可能性。对一些复杂函数的仿真结果表明,该算法易于找到全局最优解。  相似文献   

11.
粒子群优化覆盖算法   总被引:1,自引:0,他引:1       下载免费PDF全文
贾瑞玉  宁再早 《计算机工程》2011,37(21):167-169
在覆盖算法中,识别精度与泛化能力之间存在矛盾。为此,结合粒子群优化(PSO)具有的全局搜索能力,提出一种PSO覆盖算法。将领域覆盖算法中每一类样本形成的一组覆盖转化为粒子群,并在迭代过程中搜索出较好的覆盖粒子,从而得到一组个数较少且分类效果较好的覆盖。实验结果表明,该算法具有较高的分类识别精度及较优的泛化能力。  相似文献   

12.
李睿  苑柳青  李明 《计算机工程》2011,37(13):153-155
针对Unscented粒子滤波(UPF)算法中的粒子退化及重采样引起的粒子枯竭等问题,利用粒子群优化算法使粒子通过比较其当前值与最优粒子的适应度值调整自身速度,向高似然域移动,寻找最优位置,并对重采样过程进行优化,以缓解粒子的退化及枯竭问题。实验结果证明,该算法提高了UPF算法的状态估计精度。  相似文献   

13.
基于文化微粒群优化算法的DNA编码研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对DNA编码约束进行研究,选择汉明测量以及相似度作为DNA序列集设计的主要约束,并结合连续性约束与GC Content约束,将序列集设计问题抽象为带有强约束的多目标优化问题,采用文化微粒群算法解决该多目标优化问题。仿真结果表明,该混合算法针对DNA编码序列设计问题,在求解最优值能力、解的稳定性方面都能取得较好的效果。  相似文献   

14.
李金金  田雨波 《计算机工程》2011,37(24):173-175
粒子群优化算法在搜索全局最优过程中,粒子可能超出界限。针对该情况,提出5种新的受限制的边界条件,将出界粒子随机置于搜索空间内。通过基准函数将这5种边界条件与原有的6种边界条件进行对比测试,并从全局最优和收敛速度两方面对仿真结果进行分析,结果表明,新提出的随机重置的边界条件其性能明显优于置于边界的情况,无形/吸收的边界条件也稍优于其他不受限制的边界条件。  相似文献   

15.
自适应混沌粒子群优化算法   总被引:5,自引:0,他引:5       下载免费PDF全文
赵志刚  常成 《计算机工程》2011,37(15):128-130
粒子群优化算法在求解复杂函数时,存在收敛速度慢、求解精度不高、易陷入局部最优点等问题。为此,提出一种自适应混沌粒子群优化算法。在基本粒子群算法中引入混沌变量,当算法陷入早熟收敛时进行混沌搜索,同时引入非线性递减的惯性权重。实验结果表明,该算法具有较快的收敛速度和较高的收敛精度,能有效避免早熟收敛问题。  相似文献   

16.
李亚非  曹长虎 《计算机工程》2011,37(16):167-169
为充分发挥粒子群优化算法和遗传算法各自的优势,提出一种新的基于粒子群和遗传算法的协同进化算法,并将其应用于聚类分析。通过构建2个相互竞争的种群,采用相对适应度度量方法,在一个纯自举的过程中产生最优竞争个体。在现实世界数据集上的仿真实验表明,该算法在收敛精度方面优于基于遗传算法的聚类方法和基本粒子群优化聚类算法。  相似文献   

17.
毕晓君  盛磊  陈剑 《计算机工程》2011,37(23):149-151
采用传统方法设计的S盒性能较差,而常用智能设计方法又存在设计时间过长、容易陷入局部最优的缺点。为此,提出一种基于改变粒子群优化算法的S盒优化设计方法。通过改变惯性权重来提高搜索速度和精度,从而增大算法效率。实验结果表明,该方法可以快速地搜索到能有效抵抗差分密码分析和线性密码分析的S盒,改善其密码性能。  相似文献   

18.
李鹏  马红梅  张旭珍 《计算机工程》2011,37(13):246-247,261
采用传统的网络综合法设计计波器存在带宽不精确及阻带衰减过小的问题,为此,提出一种基于粒子群优化算法的无源模拟滤波器优化设计方法.在网络综合法设计的滤波器电路基础上,利用粒子群优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值.实例表明,采用该方法设计的滤波器带宽更加准确,且具有更加陡峭的阻带衰减.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号