首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以输出功率100W的阻力型垂直轴型风力机为例,通过优化设计找寻最佳的叶片数目、高径比和折叠率等几何参量,然后加入导风帘装置,给出一个最佳结构方案。运用Fluent求解器中的有限体积法对无导风帘和三种不同长度导风帘设计的叶片周围的流场进行模拟。模拟与最佳优化方式的性能参数的计算结果表明,采用长导风帘设计的阻力型垂直轴风力机具有最好的动力学性能,可以提高运行效率。  相似文献   

2.
In this study increasing the performance of Conventional Savonius wind rotor has been investigated by a 3D (three dimensional) printer which is one of the rapid prototyping techniques. For this purpose, some design changes have been introduced to increase the performance of conventional Savonius wind rotor. Here, 3D digital designing of Savonius wind rotors have been easily manufactured tangible as a physical model by a 3D printer. Experimental data concerning produced Savonius wind rotors have been acquired by using a wind tunnel. Some numerical data have been obtained from the CFD (Computational Fluid Dynamics) analysis carried out under the same conditions. The effects of the additional blade end design have been examined to obtain more torque increase on improved classical Savonius wind rotor. Furthermore, by means of introducing straight blade, the effects of the flow compression inside the blade have been reduced and rotor performance increased. Based on such optimizations, optimum additional design parameters have been designated as that (1/r) ratio is 0.3, (s/r) is 1, and (α) additional straight blade angle is 135°. It has been determined that power coefficient is increased at a ratio of around 20% together with all these design changes.  相似文献   

3.
When compared with of other wind turbine the Savonius wind rotor offers lower performance in terms of power coefficient, on the other hand it offers a number of advantages as it is extremely simple to built, it is self-starting and it has no need to be oriented in the wind direction. Although it is well suited to be integrated in urban environment as mini or micro wind turbine it is inappropriate when high power is requested. For this reason several studies have been carried-out in recent years in order to improve its aerodynamic performance. The aim of this research is to gain an insight into the complex flow field developing around a Savonius wind rotor and to evaluate its performance. A mathematical model of the interaction between the flow field and the rotor blades was developed and validated by comparing its results with data obtained at Environmental Wind Tunnel (EWT) laboratory of the “Polytechnic University of Marche”.  相似文献   

4.
S型风力机气动设计   总被引:1,自引:0,他引:1  
概述S型风力机的工作原理以及优缺点。系统分析了影响S型风轮气动性能的外形参数,总结出S型风力机达到最优气动性能时的外形参数。以最优外形参数为基础设计完成额定功率为300W的S型风力机的气动外形,所得结果可以同类型风力机的设计提供理论指导。  相似文献   

5.
Savonius风机是一种典型的垂直轴风力机。针对传统风机的发电机部分采用转子、定子一动一静的设计布局,提出了一种新型的发电机结构,从而提高风机发电效率。通过有限元分析软件ANSYS/CFX,对风力机模型进行流体分析,计算Savonius风力机的效率,验证本设计分析方法的正确性。  相似文献   

6.
This paper describes the study of a small vertical-axis wind turbine (VAWT) with a combined design of Darrius and Savonius counter-rotating rotors. The main purpose of this study is to improve the extraction capabilities of a single-rotor VAWT by using two distinct rotor designs while adopting the counter-rotating technique. Given that the conversion capabilities and operational speed of the existing wind turbines are still limited, the current technique is used to enhance the efficiency and expand the operating wind speed range of the VAWT. The Darrius and Savonius counter-rotating rotors were exposed to a similar upstream wind speed using a centrifugal blower. It was found that the Savonius-Darrius counter-rotating rotor was able to operate effectively, particularly at the low-speed wind. By looking at the individual performance of the rotors, it was observed that the conversion efficiency of the H-type rotor increases as the wind speed increases. However, in the case of the S-type rotor, it is higher at lower wind speed and tends to decrease as the operating speed increases. Thus, the maximum efficiency of the S-type rotor was achieved at low speed, whereas the H-type rotor has achieved its maximum efficiency at the highest operating wind speed. The average efficiency of the present Savonius-Darrius counter-rotating rotor has been improved to reach almost 42% and 30% more efficiency in terms of torque and power, respectively.  相似文献   

7.
S. Sivasegaram 《Energy》1978,3(1):23-30
The resistance-type, direction-independent wind turbine is suitable for the generation of power on a small scale in developing countries. So far, all work on this class of wind turbine seems to be restricted to the Savonius rotor. The present paper reports the findings of an experimental investigation of an entire class of wind turbines which includes the conventional Savonius rotor. The influence of four rotor-geometry parameters (i.e. number of blades, blade angle, blade location and angle of setting of the blade) is studied and discussed on the basis of two performance criteria (i.e. turbine efficiency and performance on the basis of blade area). The existence of optimum, design parameters is established and the possibility of improving substantially on the performance of the Savonius rotor is demonstrated. Some possible applications of the present class of turbines are briefly commented on.  相似文献   

8.
The vertical axis wind turbines are simple in construction, self-starting, inexpensive and can accept wind from any direction without orientation. A combined Savonius–Darrieus type vertical axis wind rotor has got many advantages over individual Savonius or individual Darrieus wind rotor, such as better efficiency than Savonius rotor and high starting torque than Darrieus rotor. But works on the combined Savonius–Darrieus wind rotor are very scare. In view of the above, two types of models, one simple Savonius and the other combined Savonius–Darrieus wind rotors were designed and fabricated. The Savonius rotor was a three-bucket system having provisions for overlap variations. The Savonius–Darrieus rotor was a combination of three-bucket Savonius and three-bladed Darrieus rotors with the Savonius placed on top of the Darrieus rotor. The overlap variation was made in the upper part, i.e. the Savonius rotor only. These were tested in a subsonic wind tunnel available in the department. The various parameters namely, power coefficients and torque coefficients were calculated for both overlap and without overlap conditions. From the present investigation, it is seen that with the increase of overlap, the power coefficients start decreasing. The maximum power coefficient of 51% is obtained at no overlap condition. However, while comparing the power coefficients (Cp) for simple Savonius-rotor with that of the combined configuration of Savonius–Darrieus rotor, it is observed that there is a definite improvement in the power coefficient for the combined Savonius–Darrieus rotor without overlap condition. Combined rotor without overlap condition provided an efficiency of 0.51, which is higher than the efficiency of the Savonius rotor at any overlap positions under the same test conditions.  相似文献   

9.
Conventional Savonius rotors have low performance such as low coefficient of power and low coefficient of torque. In order to increase this performance, a helical Savonius rotor with a twist of 180° is proposed. In this paper, we are interested in studying the aerodynamic behavior of the helical Savonius rotors installed in an open jet wind tunnel. Particularly we are interested in studying the influence of variation of Reynolds number and the overlap ratio on the performance of a modified Savonius rotor with aspect ratio of 1.57 at a Reynolds numbers equal to Re = 79,794, Re = 99,578, Re = 116,064 and Re = 147,059. Results conclude that the variation of Reynolds number and overlap ratio has an effect on the global characteristics of the helical Savonius rotor. A comparison between the helical one and the conventional one shows that the maximum power coefficient of the Savonius wind rotor is higher. This work is developed at Laboratory of Electro-Mechanical System (LASEM) of the National School of Engineers of Sfax (ENIS).  相似文献   

10.
Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135° to 165° and from 315° to 345° in one cycle of 360°. In order to decrease this variation in static torque from 0° to 360°, a helical Savonius rotor with a twist of 90° is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied.  相似文献   

11.
This paper presents a review on the performance of Savonius wind turbines. This type of turbine is unusual and its application for obtaining useful energy from air stream is an alternative to the use of conventional wind turbines. Simple construction, high start up and full operation moment, wind acceptance from any direction, low noise and angular velocity in operation, reducing wear on moving parts, are some advantages of using this type of machine. Over the years, numerous adaptations for this device were proposed. The variety of possible configurations of the rotor is another advantage in using such machine. Each different arrangement of Savonius rotor affects its performance. Savonius rotor performance is affected by operational conditions, geometric and air flow parameters. The range of reported values for maximum averaged power coefficient includes values around 0.05–0.30 for most settings. Performance gains of up to 50% for tip speed ratio of maximum averaged power coefficient are also reported with the use of stators. Present article aims to gather relevant information about Savonius turbines, bringing a discussion about their performance. It is intended to provide useful knowledge for future studies.  相似文献   

12.
Savonius风机是一种典型的垂直轴风力发电机,通过对其进行流固耦合分析,研究叶片转角对风机气动性能的影响。利用ANSYS的CFX流体模块,流体湍流模型选择基于RANS的标准k-ε湍流模型,对风轮进行流固耦合分析,从而获得叶片产生的力矩情况,并计算了风机的功率特性。利用求解结果,得到了力矩系数与叶片转角之间的关系。分析了风机叶片在旋转一周中所产生的最大扭矩以及负扭矩所处的位置和范围。通过分析转角对风机性能的影响,可为今后的Savonius风机叶片形状优化和效率提升提供参考。  相似文献   

13.
Drag type wind turbines have strong potential in small and medium power applications due to their simple design. However, a major disadvantage of this design is the noticeable low conversion efficiency. Therefore, more research is required to improve the efficiency of this design. The present work introduces a novel design of a three-rotor Savonius turbine with rotors arranged in a triangular pattern. The performance of the new design is assessed by computational modeling of the flow around the three rotors. The 2D computational model is firstly applied to investigate the performance of a single rotor design to validate the model by comparison with experimental measurements. The model introduced an acceptable accuracy compared to the experimental measurements. The performance of the new design is then investigated using the same model. The results indicated that the new design performance has higher power coefficient compared with single rotor design. The peak power coefficient of the three rotor turbine is 44% higher than that of the single rotor design (relative increase). The improved performance is attributed to the favorable interaction between the rotors which accelerates the flow approaching the downstream rotors and generates higher turning moment in the direction of rotation of each rotor.  相似文献   

14.
Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. In Germany, wind energy is becoming particularly important. Although considerable progress has already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a Savonius turbine with either two or three blades. In addition, the improved design leads to a better self-starting capability. To achieve these objectives, the position of an obstacle shielding the returning blade of the Savonius turbine and possibly leading to a better flow orientation toward the advancing blade is optimized. This automatic optimization is carried out by coupling an in-house optimization library (OPAL) with an industrial flow simulation code (ANSYS-Fluent). The optimization process takes into account the output power coefficient as target function, considers the position and the angle of the shield as optimization parameters, and relies on Evolutionary Algorithms. A considerable improvement of the performance of Savonius turbines can be obtained in this manner, in particular a relative increase of the power output coefficient by more than 27%. It is furthermore demonstrated that the optimized configuration involving a two-blade rotor is better than the three-blade design.  相似文献   

15.
The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0°). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle.  相似文献   

16.
Most of the classical wind turbines are not able to start at wind speeds as low as 2–3 m/s. Other turbines, like Savonius, have a low maximum efficiency, which renders them useless in poor wind conditions. Therefore, new turbine designs are required to harvest wind power even when the wind speed is low. A wind turbine having a crossflow runner, similar to the Banki water turbine, is studied numerically in this work in order to estimate its performance. The results obtained suggest that this turbine has a considerable high starting torque and its maximum power coefficient is comparable to those of horizontal axis wind turbines. Based on the results obtained, some improvements of the design are proposed in order to further increase turbine performance.  相似文献   

17.
J. -L. Menet   《Renewable Energy》2004,29(11):1843-1862
This paper presents a study, carried out with the help of the French Agency of Innovation (ANVAR). It deals with the conception of a small Savonius rotor (i.e. of low power) for local production of electricity. Our challenge was to design, develop and ultimately build a prototype of such a rotor, which was considered as a complete electromechanical system. An optimised configuration was chosen for the geometry of the present prototype. The building data were calculated on the basis of the nominal wind velocity V=10 m/s. Particular care was necessary to choose the appropriate generator, which was finally a rewound conventional car alternator. The whole design of the prototype has confirmed the high efficiency and the low technicality of the Savonius rotors for local production of electricity. The present prototype is to be tested in situ.  相似文献   

18.
The present experimental study investigates the generation and propagation of regular water waves and their interactions with an in-house fabricated horizontal-axis 3-bladed Savonius rotor in an experimental wave flume (EWF) equipped with a piston-type wave maker with active absorption capability to assess the rotor performance for different parametric conditions namely, wave height, wave period and submergence level in intermediate-to-shallow water depths. The motion of the wave particles around the Savonius rotor is observed during the experiments as well as measuring the power and torque performance of the rotor to make a reliable assessment of the water movement with the rotor positioning for different inflow wave boundary conditions. The wave-to-mechanical energy conversion efficiency (ECE) of the present device is determined for each case to suggest a possible optimum positioning accompanied with optimum wave heights and frequencies for the manufactured small scale prototype. The present results suggest that experimental solutions within the wave flume can provide a proper guideline for performance analysis of such devices in intermediate-to-shallow water depths for further studies of optimization of design of Savonius rotor type sea and/or ocean wave energy conversion devices for different operating conditions provided that optimum physical flow conditions are satisfied.  相似文献   

19.
Interactive flow field around two Savonius turbines   总被引:1,自引:0,他引:1  
The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines.  相似文献   

20.
S-rotors, which currently have numerous configurations, after the introduction of the early type by Savonius, are low-cost and simple devices used to harness wind energy for stand-alone power systems. Although the power coefficient of S-rotors is comparatively low, geometric parameters, such as overlap ratio, aspect ratio, number of blades, number of stages, and blade profile, are highly affect its performance. Optimization of the rotor design requires further understanding on how each parameter influences the rotor performance. Therefore, this comparative critique on the design parameters is conducted to highlight the performance improvement of S-rotors via the optimization of the geometric parameters. In addition, cost analysis on the small scale wind power generation has been overviewed. The influence, of the modification of the blade profiles and flow concentration setups, on the performance is also discussed with the aid of drawings, comparison table, and graphical representations. The critique on the dynamic and static characteristics of S-rotors is presented in this study to improve the characteristics of S-rotors as stand-alone electric power systems for remote rural communities. The average Cp of S-rotors under open flow conditions is ranging from 0.037 to 0.37. However, the Cp of S-rotors with external flow guides can reach up to 0.52.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号