首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aimed to evaluate camphor tree ash (green biomass ash) supported K2CO3 as a solid base catalyst for biodiesel production. The catalyst was prepared by way of first-calcination, K2CO3 solution impregnation, and second-calcination method. The catalytic performance of the catalyst for the preparation of biodiesel was investigated. Under the optimal conditions of K2CO3 loading of 50 wt%, first-calcination temperature of 800°C, second-calcination temperature of 500°C, catalyst concentration of 5 wt%, catalytic time of 210 min, methanol/oil molar ratio of 14:1, and catalytic temperature of 65°C, the biodiesel yield reached 92.27%.  相似文献   

2.
A solid base catalyst was prepared by neodymium oxide loaded with potassium hydroxide and investigated for transesterification of soybean oil with methanol to biodiesel. After loading KOH of 30 wt.% on neodymium oxide followed by calcination at 600 °C, the catalyst gave the highest basicity and the best catalytic activity for this reaction. The obtained catalyst was characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), N2 adsorption-desorption measurements and the Hammett indicator method. The catalyst has longer lifetime and maintained sustained activity after being used for five times, and were noncorrosive and environmentally benign. The separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and reaction time were investigated. The experimental results showed that a 14:1 M ratio of methanol to oil, addition of 6.0% catalyst, 60 °C reaction temperature and 1.5 h reaction time gave the best results and the biodiesel yield of 92.41% was achieved. The properties of obtained biodiesel are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel.  相似文献   

3.
The present work describes the synthesis of porous BaSnO3 by eco‐friendly sol‐gel method using albumin as a bio‐template agent, and its application as a solid base catalyst in biodiesel production from waste cooking oil. The physico‐chemical, textural, and morphological properties of the catalyst were evaluated by X‐ray diffraction (XRD), Brunauer‐Emmett‐Teller (BET), field emission scanning electron microscopy (FESEM), and temperature programmed desorption (TPD)–CO2 techniques. The synthesized catalyst showed considerable stability, efficient catalytic activity, and negligible metal leaching. The satisfactory performance of the catalyst could be ascribed to the presence of basic sites of different strength on the surface of the catalyst. The catalyst produced maximum biodiesel yield of 96% at optimum reaction conditions of 90°C reaction temperature, methanol to oil molar ratio of 10:1, catalyst dosage of 6 wt%, and reaction time of 2 hours. Moreover, the catalyst showed substantial reusability up to five reaction cycles without any considerable decrease in transesterification activity.  相似文献   

4.
The waste eggs and mollusk shells are found to be the richest sources of calcium carbonate and have been utilized for various purposes after proper treatments. When calcined at a proper temperature calcium carbonate converts into CaO, which is a metal oxide. Researchers have found that the CaO prepared from the waste shells can be used as catalyst in biodiesel production process. Utilization of waste shells as a source of CaO not only gives an opportunity to use it as catalyst but also adds value to the waste generated. In this paper a brief discussion with recent development on biodiesel production using waste shell derived solid oxide as catalyst is presented.  相似文献   

5.
Mixed and ground activated snail shell and kaolin catalysts impregnated with KBr were investigated. The snail shell and kaolin were calcined, mixed, and ground prior to immersion with KBr solution and subsequent activation at 500 °C for 3 h. The precursor and catalysts were characterized by thermal gravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The catalytic performance of the prepared catalysts was evaluated by transesterification of soybean oil with methanol. The effects of various parameters on biodiesel yield were investigated. A biodiesel yield of 98.5% was achieved using the catalyst prepared by 40% KBr-immersed, mixed, and ground snail shell and kaolin, which were activated at 500 °C. The transesterification conditions were as follows: reaction temperature, 65 °C; reaction time, 2 h; methanol-to-soybean oil molar ratio, 6:1; and catalyst amount (relative to the weight of soybean oil), 2.0 wt%. The solid catalyst could be reused for four times, and biodiesel yield remained over 73.6% for the fourth time.  相似文献   

6.
This study aimed to optimize the hydrogen production from various seed sludges (two kinds of sewage sludges (S1, S2), cow dung (S3), granular sludge (S4) and effluent from condensed soluble molasses H2 fermenter (S5)) and enhancement of hydrogen production via heat treatment for substrate and seed sludge by using the solid residues of biodiesel production (BDSR). Two batch assay tests were operated at a biodiesel solid residue concentration of 10 g/L, temperature of 55 °C and an initial cultivation pH of 8. The results showed that the peak hydrogen yield (HY) of 94.6 mL H2/g volatile solid (VS) (4.1 mmolH2/g VS) was obtained from S1 when substrate and seed sludge were both heat treated at 100 °C for 1 h. However, the peak hydrogen production rate (HPR) and specific hydrogen production rate (SHPR) of 1.48 L H2/L-d and 0.30 L H2/g VSS-d were obtained from S2 without any treatment. The heat treatment was found to increase the HY in both the cases of sewage sludges S1 and S2.The HY of 89.5 mL H2/g VS (without treatment) was increased to 94.6 mL H2/g VS and 82.6 mL H2/g VS (without treatment) was increased to 85.7 mL H2/g VS for S1 and S2. The soluble metabolic product (SMP) analysis showed that the fermentation followed mainly acetate–butyrate pathway with considerable production of ethanol. The total bioenergy production was calculated as 2.8 and 2.9 kJ/g VS for favorable hydrogen and ethanol production, respectively. The BDSR could be used as feedstock for dark fermentative hydrogen production.  相似文献   

7.
Biodiesel production via transesterification of waste cooking oil (WCO) with methanol using waste chicken bone-derived catalyst was investigated. The calcium carbonate content in the waste chicken bone was converted to calcium oxide (CaO) at a calcinations temperature of 800°C. The catalysts were prepared by calcination at 300–800°C for 5 h and catalyst characterization was carried out by X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurement. CaO was used as catalyst for biodiesel production. The results of the optimization imply that the catalyst concentration of 3.0 wt%, methanol to oil ratio of 3:1, and reaction temperature of 80°C for 3 h provide the maximum values of yield in methyl ester production. Reusability of the catalyst from calcined waste chicken bone was studied for four times, with a good yield.  相似文献   

8.
固体酸催化剂在生物柴油合成实验中的研究   总被引:2,自引:0,他引:2  
针对生物柴油催化合成技术中,采用一般催化剂所存在的问题,自制了4种固体酸催化剂,测试了它们在以大豆酸化油为原料制备生物柴油反应中的催化活性及重复使用性,确定了合成生物柴油的工艺条件。  相似文献   

9.
ABSTRACT

In this study, the silver-exchanged heteropolyacids were prepared by a simple and environmentally friendly ion exchange method, were found to be active in the esterification of oleic acid with methanol to produce biodiesel. The catalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM), separately. The effect of various factors was investigated to optimize the reaction conditions. The results showed that the oleic acid conversion can reach 91.3% after reacting for 3 h at 70°C, with oleic acid to methanol ratio of 1:10 and the amount of catalyst of 5 wt.%. Moreover, the catalyst could be easily separated from the reaction mixture and used repeatedly for five cycles with the oleic acid conversion over 50.1%, due to its relative stability. In particular, this catalyst can also catalyze other esterification of fatty acids with different chain length of carboxylic acid and high acid value non-edible oils, which may provide significant benefits for developing an environmentally benign and continuous process for synthesizing biodiesel in the future.  相似文献   

10.
In this study, a simple and solvent-free method was used to prepare sulfated zirconia-alumina (SZA) catalyst. Its catalytic activity was subsequently investigated for the transesterification of Jatropha curcas L. oil to fatty acid methyl ester (FAME). The effects of catalyst preparation parameters on the yield of FAME were investigated using Design of Experiment (DOE). Results revealed that calcination temperature has a quadratic effect while calcination duration has a linear effect on the yield of FAME. Apart from that, interaction between both variables was also found to significantly affect the yield of FAME. At optimum condition; calcination temperature and calcination duration at 490 °C and 4 h, respectively, an optimum FAME yield of 78.2 wt% was obtained. Characterization with XRD, IR and BET were then used to verify the characteristic of SZA catalyst with those prepared using well established method and also to describe the catalyst characteristic with its activity.  相似文献   

11.
固体碱催化剂在麻疯树油合成生物柴油中的应用   总被引:1,自引:0,他引:1  
简述了生物柴油作为燃料的优越性,讨论了以固体碱作催化剂、以麻疯树油为原料合成生物柴油的工艺条件.试验研究了该反应的最佳反应条件:固体碱催化剂的用量为麻疯树油质量的1%,油醇物质的量比为1:6,反应温度为70℃.  相似文献   

12.
An economic and environmentally friendly catalyst derived from waste freshwater mussel shell (FMS) was prepared by a calcination-impregnation-activation method, and it was applied in transesterification of Chinese tallow oil. The as-prepared catalyst exhibits a “honeycomb” -like structure with a specific surface area of 23.2 m2 g−1. The newly formed CaO crystals are major active phase of the catalyst. The optimal calcination and activity temperature are 900 °C and 600 °C, respectively. When the reaction is carried out at 70 °C with a methanol/oil molar ratio of 12:1, a catalyst concentration of 5% and a reaction time of 1.5 h, the FMS-catalyst is active for 7 reaction cycles, with the biodiesel yield above 90%. The experimental results indicate that the FMS can be used as an economic catalyst for the biodiesel production.  相似文献   

13.
Ag/bauxite nanocomposites have been prepared using in situ reduction of aqueous AgNO3 solution in a bauxite matrix and investigated for the transesterification of sunflower oil with methanol in order to study their potential as heterogeneous catalysts. The prepared nanocopmosites were characterized by XRD, SEM, EDX, FT-IR, and TG- DTA. The Central Composite Design of the Response Surface Methodology was used to optimize the effect of reaction temperature, reaction time, catalyst loading and methanol to oil molar ratio on the yield of fatty acid methyl esters. The highest yield was obtained at 67 °C reaction temperature, 3 h reaction time, 0.3 wt.% catalyst loading and 9:1 methanol to oil molar ratio. Under the optimal conditions, the methyl ester content was 94% and the catalyst successfully reused for at least 7 cycles without significant deactivation.  相似文献   

14.
In this paper, the fat content of insects is studied for its utilization in the production of biodiesel. The study has shown the great fat potential of insects, highlighting a large number of species with an ether extract higher than 25%, including a large number in excess of 30% and some even reaching levels close to or above 77%. Moreover, a review of the main criteria to be considered for the selection of insect species for biodiesel production is carried out. It was observed that the fat content varies widely between orders, species, and their stages of development – larva, prepupa, pupa, nymph or adult – with the larval stage being that at which the most fat is accumulated. Furthermore, variations in the fat content were observed within the same species due to factors such as origin (wild or bred in captivity) or type of diet. This last factor is one of the most important to take into account for the selection of insect species with the objective of using their fat in the production of biodiesel. The principal conclusion of this study is that insects, through the development of their life cycle, can be fed with agricultural, industrial or urban by-products in order to accumulate a large amount of fat with potentially excellent quality (fatty acids C16–18), for conversion into energy through biodiesel production. Moreover, the resulting protein can also be used as a protein source in animal feed. Therefore, insects are a renewable source of protein and energy.  相似文献   

15.
Hiking of crude oil prices and diesel fuel shortage is incentive for the researchers to develop bioenergy sources. Biodiesel has environmental beneficial attributes, and its production processes are worthy of continued studies. Many biodiesel production processes are available but, most of them are not on a commercial scale. Biodiesel production using solid catalysts involved fewer unit operations compared with homogeneous catalyzed processes. Many heterogeneous catalysts have been extensively investigated in the recent years and well established. Researchers' focus is how to obtain active and more stable silicates catalyst that can be recycled for several times in the process. Silicates catalyst activity and stability are critically discussed in this work to assess their industrial application, as excessive purification steps could be avoided. This review provides a brief overview on semi‐novel heterogeneous catalyst types ‘silicates’ used in the transesterification of vegetable oils for biodiesel production. Process conditions and leaching out of catalyst active sites are also highlighted. Product quality analysis is presented, in addition to concluded remarks regarding silicates as a selected catalyst. A preliminary economic assessment of biodiesel production catalyzed by the suggested catalyst ‘silicates’ compared with potassium hydroxide (KOH) and lime (CaO) is performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 °C and 700 °C, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1% Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2% FAME in the 2nd reaction step and 34% FAME in the 3rd reaction step. The biodiesel obtained in the transesterification reaction showed composition and quality parameters within the limits specified by the European Standard EN 14214. 2.5% wt catalyst/oil and a molar ratio methanol:oil of 9:1 or 12:1 at 60–65 °C and 4 h of reaction time are the best operating conditions achieved in this study. This study showed the potential of Mg/Al hydrotalcites as heterogeneous catalysts for biodiesel production.  相似文献   

17.
In the present work, zeolite based catalyst was prepared from zeolite tuft by impregnation methods. The zeolite tuft was initially treated with hydrochloric acid (16%) and then several KOH/zeolite catalysts were prepared by impregnation in KOH solutions. Various solutions of KOH with different molarities (1–6 M) were used. Further modification for the catalyst was performed by a 2nd step impregnation treatment by heating and stirring the KOH/zeolite to 80 °C for 4 h. The zeolite tuft and the prepared catalysts were characterized by several analytical techniques in order to explore their physicochemical properties. These tests include: X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), Zero point of Charge (PHzpc), Fourier Transform Infrared (FT-IR), Energy-dispersive X-Ray analysis (EDX) and X-Ray Diffraction (XRD). The catalysts were then used for transesterification of waste sunflower vegetable oil in order to produce biodiesel. Among the different catalysts prepared, the 1–4M KOH/TZT catalyst provided the maximum biodiesel yield of 96.7% at 50 °C reaction temperature, methanol to oil molar ratio of 11.5:1, agitation speed of 800 rpm, 335 μm catalyst particle size and 2 h reaction time. The physicochemical properties of the produced biodiesel comply with the EN and ASTM standard specifications.  相似文献   

18.
19.
In this work, hydrotalcite-derived particles with Mg/Al molar ratio of 3/1 were synthesized by a coprecipitation method using urea as precipitating agent, subsequently with (MHT) microwave-hydrothermal treatment, and followed by calcination at 773 K for 6 h. These particles were micro-sized mixed Mg/Al oxides as characterized by SEM and AFM. But actually they were nanosized according to the calculations from XRD data. Because of their strong basicity, the nanoparticles were further used as catalyst for biodiesel production from Jatropha oil after pretreatment. Experiments were conducted with the solid basic catalyst in an ultrasonic reactor under different conditions. At the optimized condition, biodiesel yield of 95.2% was achieved, and the biodiesel properties were close to those of the German standard. The catalyst can be reused for 8 times.  相似文献   

20.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号