首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 135 毫秒
1.
关联规则挖掘作为数据挖掘的一个重要方法,在许多数据挖掘领域得到应用。本文阐述了关联规则挖掘以及其关键算法,并针对具体的实例,描述了数据挖掘工具weka挖掘关联规则的过程。  相似文献   

2.
关联规则广泛应用于网络入侵检测,抽取KDDCUP99数据集的重要特征属性,运用Weka软件的关联规则挖掘算法,对拒绝服务攻击类型中不同属性特征进行分析,得到了back攻击类型中不同属性特征间的联系,对提高入侵检测的效率和准确率有极好的作用。  相似文献   

3.
基于矩阵与图的关联规则挖掘   总被引:5,自引:0,他引:5  
提出了一种新的算法,该算法是在基于图的关联规则挖掘的基础上进行研究,并提出改进。该算法与传统的关联规则挖掘算法Apfiofi算法相比,具有一定的优势,如复杂度低,无需多次扫描数据库等。  相似文献   

4.
分析传统关联关系挖掘的主要缺陷,提出关联模型的概念以及关联模式挖掘算法,指出通过多种模式的挖掘,找到课程之间隐含的关联关系,并通过真实的教学数据验证该算法,通过分析实验结果,得出该算法能够有效准确地挖掘出两门课程之间关联关系的结论。  相似文献   

5.
本文基于路面评价指标中车辙深度指数和行驶质量指数来评价路面的损坏情况,使用关联规则挖掘环境、交通、路面等影响因素与路面状况之间的关联程度.针对关联规则Apriori算法复杂度和耗时的缺点,提出一种不生成候选集的方法来产生频繁集的改进Apriori算法,并通过实验对比证明改进的Apriori算法能够有效提升速度和性能.使用改进的Apriori算法分析路面评价指标及其影响因素之间的强关联规则,得到不同环境路面损坏的主要成因.本文结论能够对路面养护提供科学可靠的支持,可为路面养护部门提供合理的养护建议与数据支撑.  相似文献   

6.
随着图像获取和图像存储技术的迅猛发展,能够方便得到大量的图像数据。为了能充分从这些图像数据中分析并提取有用信息,研究了数据挖掘中的新型领域——图像数据挖掘技术。主要介绍了数据挖掘、图像数据挖掘及关联规则在图像数据挖掘中的应用。  相似文献   

7.
信息时代的到来,产生了大量的数据。在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将会创造很多潜在的利润。关联规则的挖掘已被广泛应用在实际生活中。但过去的研究往往认为数据库各个项目的重要程度是相同的,而事实上,用户对项目的看重程度是不同的,因此已有算法挖掘出来的并不一定是我们感兴趣的规则。针对这种情况.提出了加权关联规则。  相似文献   

8.
讨论了一种接口技术,用于实现在关联规则挖掘时用户可以通过接口的界面选择要执行的算法,以及设置关联规则的“置信度”和“支持度”参数,并将挖掘的结果以容易理解的方式通过接口的界面显示出来。该接口以COM技术和VB、VC语言为基础设计开发,能对SQL Server创建的数据库进行挖掘。通过以Apriori算法和FP-Tree算法的实验,证明接口的工作是正确有效的。  相似文献   

9.
笔者以数据挖掘中典型的购物篮分析为案例,通过购物支持度和置信度,分析了频繁项集和关联规则,得出基于Apriori算法的关联分析的基本思想和相关算法流程。基于此,通过具体案例详细分析了Apriori算法的实现过程,并针对Apriori算法实现过程中的优缺点,提出了Apriori算法的改进和优化思想。  相似文献   

10.
基于免疫算法的多维关联规则挖掘方法   总被引:1,自引:0,他引:1  
关联规则挖掘是一个重要的数据挖掘问题,文章给出了一种基于免疫算法的多维关联规则挖掘算法,算法充分利用了免疫记忆特性,把挖掘的关联规则存入记忆库,加快了关联规则的挖掘速度。实验结果表明该算法具有较好的鲁棒性,能快速、有效地进行全局优化搜索。特别适用于大规模、海量数据库的挖掘。  相似文献   

11.
杨泽民 《软件》2013,(11):71-72,92
近些年来,计算机技术迅猛发展带动信息技术的兴起,数据挖掘技术被广泛地应用到各个领域当中。这个新兴的领域为数据挖掘技术提供了最为活跃的算法,即关联规则算法,其能够对于大量的数据和信息进行处理,通过将繁琐的项集从数据库中找出来,经过整理之后,将项集之间的关联关系建立起来,从中挖掘出有价值的数据信息,以在一定程度上满足不同领域的需要。本文针对数据挖掘中关联规则算法进行研究。  相似文献   

12.
互联网技术在带给我们一个信息爆炸时代的同时,也极大地增加了从浩瀚数据堆里寻找有用知识的困难程度。面对不断拓展的数据规模,对海量信息的搜索、管理以及实时处理能力将面临严峻的挑战。文章主要介绍基于Apriori算法关联规则的具体应用。  相似文献   

13.
关联规则数据挖掘方法的研究   总被引:3,自引:0,他引:3  
首先简要地介绍数据挖掘和关联规则的概念、关联规则的基本原理及种类。然后详细地介绍了关联规则挖掘研究现状,讨论了Apriori算法的基本原理,同时也指出了Apfiofi算法的一些不足。针对这些不足提出了解决方法,描述了几种改进算法。最后对关联规则挖掘下一步的研究方向进行了展望。  相似文献   

14.
关联规则挖掘算法的改进   总被引:2,自引:1,他引:2  
为了提供一种更加准确高效的关联规则算法,在传统的Apriori算法的基础上引入分而治之的理念和加权的思想。先把数据库分成互不相交的块,根据需求分析从每一个块中产生用户感兴趣的子集,把所有的子集合并成挖掘对象,再利用普通的关联规则算法产生频繁项集,最后在该项集的基础上产生加权频繁项集。该算法基本上克服了传统Apriori算法的缺点,从而大大地提高了运算效率,最大限度解决了“项集生成瓶颈”问题,并且使得生成的关联规则更加科学、准确。  相似文献   

15.
数据挖掘中关联规则算法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。  相似文献   

16.
研究了旅游线路规划的现状.介绍了在旅游线路规划中使用的方法,引入了关联规则挖掘的基本概念,以及分析了其主要过程。并通过分析关联规则挖掘中的Apriori算法及其改进算法的基础上,提出了一种将Apriori改进算法与旅游线路规划挖掘结合的概念,通过与Apriori算法相比较,提高了系统的效率,并给出了一种典型应用,获得了较理想的应用效果。最后结合当前的旅游网站特点,充分应用网站的信息,设计了一个旅游线路规划的挖掘系统。  相似文献   

17.
赵静 《电脑开发与应用》2012,25(7):16-17,20
A priori算法是经典的关联规则挖掘算法,它利用逐层搜索的迭代方法完成频繁模式的挖掘工作,反复进行连接剪枝操作,思路简单易操作,但也伴随着产生庞大候选集,多次扫描数据库产生巨大I/O开销的问题,提出一种改进算法:基于矩阵的关联规则挖掘算法,同A priori算法比较,该算法只需扫描一遍数据库,就可直接查找k-频繁项集,尤其是当频繁项集较高的时候,该算法具有更高的执行效率,在大数据量的情况下更具有可行性。  相似文献   

18.
关联规则挖掘可以发现大量数据中项集之间相关联系的知识,这些重要信息是关于这些数据的整体特征描述以及对其发展趋势的预测,对决策的制定有着重要的参考价值。主要介绍了数据挖掘和关联规则挖掘的概念,并对数据挖掘经典算法Apriori的进行了分析与改进,算法的改进可以有效地减少对数据库的扫描次数,使挖掘的效率更好更快。  相似文献   

19.
一种关联规则挖掘算法及其在医疗信息挖掘中的应用   总被引:1,自引:0,他引:1  
系统对待挖掘数据进行清理、集成、选择、变换等预处理,构建了待挖掘数据库--病人病症数据库,采用关联分析方法进行基于总结规则的数据挖掘,得到了与某一病症相关的各个症状之间的关联关系,以及各个症状与该病症之间的关联关系,并对结果进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号