首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Autonomous Province of Vojvodina is an autonomous province in Serbia, containing about 27% of its total population according to the 2002 Census. It is located in the northern part of the country, in the Pannonian plain. Fruska Gora is a lonely island mountain in the Pannonian plain. The research presented in this paper highlights the potential of significant contributing to waste wood biomass in the Park “Fruska Gora (Vojvodina, Serbia) and points to the possibility of using biomass for briquettes production—the final product that can be used for energy purposes. The amount of woody biomass per hectare can be calculated if the data about the average number of trees per hectare are known. For the analyzed case, the value found in 1 ha was 383.1 m3/ha or 272 ± 14 tons, and practically measured value was 402 m3/ha, or 289 tons. The relative deviation of calculated and obtained values of Canadian poplar wood biomass per hectare was 5.88%. Quantities of planned wood waste biomass can be used to produce high-quality briquettes for thermal energy generation purposes in the equivalent of 4.8 million kWh. The large energy potentials, in Vojvodina are still substantially unused, and besides of using waste wood from forestry, it is necessary to consider the sustainable use of available waste biomass from the timber industry.  相似文献   

2.
The study attempts to quantify the root biomass and density, nodulation, crop biomass and grain yield of soybean, to analyze crop growth and energy (renewable and non-renewable) inputs in relation to fertilizer-NPK and organic manure. Observations were recorded from soybean grown with no fertilizer, NPK and NPK + FYM (farmyard manure). The root biomass (BMroot) increased significantly with NPK + FYM compared to NPK and control. The trend of BMroot was best fitted with a third order polynomial. Root length density was higher in NPK + FYM. Biomass of stem, petiole and leaf were significantly greater in NPK + FYM than other treatments, relative contribution to total biomass at physiological maturity were stem 29%, petiole 9%, leaf 17% and pod 46%; quadratic regression models best represented the stem, petiole and leaf biomass data. A maximum LAI of 4.88, total biomass of 633 g m?2 at maturity, CGR of 18.4 g m?2 d?1 were recorded in NPK + FYM. Grain yields increased by 72.5 and 98.5%, and stover yields by 56.0 and 94.8% in NPK and NPK + FYM, respectively over control. Though the total energy input in NPK + FYM was greater than those in NPK and control, the share of renewable energy was much higher with greater net energy output and non-renewable energy productivity in NPK + FYM than NPK. The use efficiency of non-renewable energy was also higher in NPF + FYM. Thus, a combination of NPK-fertilizer and organic manure (FYM) could be the viable nutrient management option for soybean production.  相似文献   

3.
In a greenhouse experiment we applied three levels of drought stress and monitored growth variables and biomass production of Jatropha curcas seedlings propagated from three seed accessions. We determined biomass allocation, allometric relationships and plant traits. Well-watered J. curcas seedlings grew 0.81 ± 0.15 cm day?1 in length and produced 1.49 ± 0.31 g dry biomass day?1. Under medium stress (40% plant available water) the plants maintained a similar stem shape, although they grew at lower rate (stem length: 0.28 ± 0.11 cm day?1; dry biomass production: 0.64 ± 0.18 g day?1). Seedlings under extreme drought stress (no irrigation) stopped growing, started shedding leaves and showed shrinking stem diameter from the 12th day after the start of the drought treatment. The drought treatment did not influence the wood density (0.26 g cm?3). The root/shoot ratio of the wet treatment was 0.27, which is low compared to other tropical trees. Both the biomass allocation and root/shoot were significantly influenced by drought. Plants of the different accessions were uniform in biomass production and plant traits. The allometric relationship predicting total aboveground biomass (B) with the stem diameter (D) (B = 0.029 × D2.33; R2 = 0.89) fits well in universal scaling models in which the exponent is expected to converge to ~2.67 at plant maturity. Based on a small validation data set from mature J. curcas individuals this hypothesis could be confirmed. A second regression model predicts the total leaf area (LA) as a function of stem diameter (LA = 2.03 × D2.41; R2 = 0.95). The estimated transpiration crop coefficient Kcb ranged from 0.51 to 0.60 for the well-watered plants.  相似文献   

4.
《Biomass & bioenergy》2005,28(4):355-365
Intensive management for biomass production results in high rates of nutrient removal by harvesting. We tested whether wood ash generated when burning wood for energy could be used to ameliorate negative soil effects of short-rotation harvesting practices. We measured the temporal and spatial dynamics of soil nutrient properties after wood ash applications in a willow plantation in central New York State and determined the influence of wood ash application on willow growth. Wood ash was applied annually for 3 years at the rates of 10 and 20 Mg ha−1 to coppiced willow, Salix purpurea, clone SP3. Wood ash application significantly increased soil pH in the 0–10 cm soil layer from 6.1 in the control to 6.9 and 7.1 in the 10 and 20 Mg ha−1 treated plots. Wood ash application significantly increased soil extractable phosphorus, potassium, calcium, and magnesium concentrations. Potassium was the element most affected by wood ash treatment at all soil depths. Wood ash had no significant effect on nutrient concentrations of foliar, litter, and stem tissue. Wood ash did not affect either individual plant growth or plot biomass production, which declined over the course of the study; it did increase the size of stems, but this effect was balanced by a decrease in the number of stems. Applying nitrogen as well as wood ash might be required to maintain the productivity of this SRIC system.  相似文献   

5.
《Biomass & bioenergy》2007,31(6):367-374
Populus nigra as an autochthonous European woody species is irreplaceable in regions where it is not legal to plant allochthonous species. Twelve clones of P. nigra ssp. nigra and one clone NE-42 (Populus maximowiczii×Populus trichocarpa) were tested in two localities at altitudes of 515–600 m with annual temperatures 5.7–6.8 °C. Different cultural practices and nutrition were used in these localities. Rooted plants were set out (2222 plants ha−1). The second harvest was carried out after 4 years in a 7-year crop. The yield of the best clones of P. nigra (7.6–7.9 t ha−1 yr−1) approached the yield of hybrid clone (9.4 t ha−1 yr−1) in a fertilised locality, with pH=6.7 and lower rainfall amounts in the growing season. In a locality with pH=5, without fertilisation and with high groundwater level the yield of clones of P. nigra was 4.6–2.2 t ha−1 yr−1, in clone NE-42 it was 9.8 t ha−1 yr−1. The most productive clones of P. nigra had a significantly higher number of shoots (16.8–14.2) than the clone NE-42 (9.3) and the mortality of their shoots was lower (14–31.4%) than in NE-42 (32.1%). Shoots 20–53 mm in diameter accounted for 50% of the volume index of shoots in almost 70% of P. nigra clones. In high-yielding clones of P. nigra the dry weight of lateral shoots in total weight ranged between 66% and 75% while in NE-42 it was 55%. Resistance to Melampsora larici-populina Kleb. was higher in the interspecific hybrid but the best clone of P. nigra had a similar level of resistance.  相似文献   

6.
The partitioning and quality of aboveground biomass have important ramifications for crop management and biomass conversion. In preliminary studies, Saccharum sp. × Miscanthus sp. hybrids exhibited stubble cold tolerance in west-central Arkansas, unlike Saccharum sp. × Saccharum spontaneum hybrids. The objective was to examine foliar and stem quality of the C4 grasses Miscanthus sinensis (‘Gracillimus’), Miscanthus x giganteus (Q42641, proprietary), Panicum virgatum (‘Alamo’), and two F1 hybrids of Saccharum sp. × Miscanthus sp. (US84-1028 and US84-1058) in a field study during 2004 (plant cane) and 2005 (first stubble) near Booneville, AR. Switchgrass produced more stems m?2 than the other entries both years, and there was little difference in stem number among other entries. Clone US84-1028 yielded more dry mass m?2 than other entries in plant cane, while switchgrass, US84-1028, and M. x giganteus did not differ in first stubble. Clone US84-1028 also had more stem dry mass and leaf dry mass than other entries both yr. Tissue N concentrations were low for these entries, but leaves contained about twice the N of stems (≤15.2 and 7.8 g kg?1, respectively). Leaves represented as much as one-third of total biomass, and had large cellulose (≤482 g kg?1) and lignin (167 g kg?1) concentrations. The competitively high biomass yield of this small sample of sugarcane alleles should encourage the expansion of the crop beyond its current production regions. Sugarcane and M. x giganteus should be examined in higher-input temperate systems because of their bioenergy potential.  相似文献   

7.
《Biomass & bioenergy》2007,31(10):700-709
The crown biomass, being one of the most susceptible components of the above-ground tree biomass, could respond positively to environmental changes and temporary increase in nutrient availability. The influence of wood ash and nitrogen fertilization on crown biomass was studied in a 40-year-old Scots pine (Pinus sylvestris L.) stand growing on a Haplic Arenosol. The 36-model trees for the crown biomass measurements were sampled for 3 growing seasons after the application of 5.0 t wood ash ha−1, 180 kg N ha−1, 2.5 t wood ash ha−1 plus 180 kg N ha−1, and control (untreated plots). The masses of the current, 1-year-old and older needles and shoots, and branches were measured. A significant influence on the current year needles and shoots was found after the application of 180 kg N ha−1 or 2.5 t wood ash ha−1 plus 180 kg N ha−1. When wood ash was applied in combination with nitrogen, an extra response tendency of the crown growth, especially of the top and the middle sections of the crown, was determined. However, there was no short-term influence of wood ash on crown biomass growth.  相似文献   

8.
《Biomass & bioenergy》2007,31(4):195-204
During the last decade, more than 400 000 ha of agricultural land was abandoned in Estonia. Such areas are often characterized by rapid natural afforestation with silver birch, which has led to an increase both in the woodland area and in the area of silver birch stands. However, many bioenergetic aspects related to birch stands growing on arable land are still poorly understood. The main aim of the present study was to investigate the above-ground biomass production, nutrient (NPK) accumulation, and foliar characteristics of young silver birch stands on abandoned agricultural land. Five 8-year-old stands of silver birch growing on different soil types were included in the study.The density of the studied stands varied from 3060 to 36 200 trees per ha and their above-ground biomass varied from 6.0 to 22.9 t DM ha−1. The largest share in the above-ground biomass of the birches (59–80%) was from the stems. The mean stem mass of the birches ranged from 0.29 to 1.79 kg, and the mean total above-ground biomass ranged from 0.36 to 3.03 kg. The leaf area index for the studied stands varied from 1.21 to 4.64 m2 m−2, being the highest for the stand of medium density. Mean single leaf area varied from 9.4±0.2 to 15.4±0.3 cm2, leaf weight per area varied from 61.1±0.4 to 77.5±0.5 g m2, and specific leaf area varied from 13.2±0.1 to 16.8±0.1 m2 kg−1. However, no significant differences were found between stand density and the foliar characteristics. There was a strong positive correlation between soil nitrogen concentration and leaf nitrogen concentration (R=0.92); regarding phosphorus concentration, the corresponding correlation was weak (R=0.52) and regarding potassium concentration, no significant correlation was found. The amount of nitrogen accumulated in the above-ground part of the silver birch stands varied between 42.4 and 145.8 kg ha−1, the amount of phosphorus, between 5.9 and 27.9 kg ha−1, and the amount of potassium, between 7.2 and 78.6 kg ha−1. The N:P:K ratios for the foliage were comparable. It is evident that the proportion of nitrogen and phosphorus are close to optimum, while the N:K ratio was lower than optimum value in all cases.  相似文献   

9.
《Biomass & bioenergy》2007,31(10):710-716
An experiment was set up in a 38-year-old Scots pine stand (forest type Pinetum vacciniosum) on a sandy soil (Haplic Arenosol). Raw wood ash (WA) and nitrogen (N) fertilizers were applied. There were 6 treatments: (1) 1.25 t WA ha−1; (2) 2.5 t WA ha−1; (3) 5.0 t WA ha−1; (4) 180 kg N ha−1; (5) 2.5 WA t ha−1 together with 180 kg N ha−1; and (6) control (without ash or N). The effects on ground vegetation cover, biomass and chemistry of Pleurozium schreberi (Brid.) Mitt. were studied.The ground vegetation cover measurements were performed from the initial phase of the experiment and continued annually in all treatments. The ground vegetation biomass and the concentrations of the main plant nutrients (N, P, K, Ca and Mg) and some heavy metals (Cr, Cd, Pb, Ni, Cu and Zn) were determined in the 5.0 t WA ha−1 and 180 kg N ha−1 plots 2 years after the application.The study results showed a significant reduction of the moss cover after the application of wood ash, and the higher ash dose gave a higher decrease. N and wood ash applied together with N also decreased the cover of the moss. Small changes in the mean cover of the vascular plants occurred after the N application. The biomass of the moss remained unaffected. Significant increases of the P, Ca and Mg concentrations in P. schreberi were found after the application of 5.0 t WA ha−1, and also higher N concentrations were obtained after N application. No wood ash influence on the heavy metal (Cd, Pb, Cr, Ni, Cu and Zn) concentrations in P. schreberi was found.  相似文献   

10.
《Biomass & bioenergy》2006,30(5):393-404
Litter fall and nutrient return via the litter fall were measured during the first 3-yr rotation of three Eucalyptus short rotation forest species (E. botryoides, E. globulus and E. ovata) irrigated with meatworks effluent compared with no irrigation. Up to 13.4 oven dry t/ha/yr of annual litter fall was recorded with nutrient returns of up to 159 kg N/ha/yr, 9 kg P/ha/yr, 28 kg K/ha/yr, 125 kg Ca/ha/yr, 22 kg Mg/ha/yr, and 32 kg Mn/ha/yr. Effluent irrigation increased the litter fall and the return of some nutrients. More litter fall with higher nutrient return was found under E. globulus than under the other two species. However, the amounts of litter fall and nutrient return were highly dependent on the degree of biomass production and nutrient uptake. During the 3-yr period, up to 20% of the total above ground biomass produced was in the form of litter, and via the litter fall, up to 24% of the total N uptake was returned to the soil surface.  相似文献   

11.
《Biomass & bioenergy》2007,31(10):739-746
This paper examines the possibilities of increasing the use of wood from private forests in Lithuania for bioenergy purposes. Potential wood fuel supply and consumption were investigated using a literature review and analysis of statistical data. Costs of wood chips production were calculated applying economic simulation. The analysis showed that 0.6 Mm3 (1.2 TWh) of firewood is produced and about 0.3 Mm3 (0.6 TWh) of forest logging residues could be used annually for fuel in private forests. The available volume will increase in coming decades. In total, Lithuanian households had increased wood fuel consumption by five times during 10 years and exceeded 2.3 Mm3 (4.6 TWh) in 2003. Firewood production for home consumption is one of the most important forest owners’ objectives.The cost of forest chips varied from 19 to 36 euro m−3 in pre-commercial thinnings and from 20 to 28 euro m−3 in final thinnings. The lack of specific policies supporting the use of natural resources is causing a lack of incentive to increase the use of local fuels.  相似文献   

12.
A Geographic Information System (GIS) was used to estimate the technically available woody biomass from forests and willow biomass crops within a 40 km radius of Syracuse and Tupper Lake, NY. Land cover and land use data were used to identify the available land base and restrictions were applied for slope, parcel size and designated wetlands. Approximately 222,984 oven-dry tonnes (odt) of forest biomass are technically available annually around Syracuse, from 165,848 hectares (ha) of timberland. There are 67,880 ha of agricultural land technically available for growing willow biomass crops, which could produce 38,181 odt yr?1 if 5% of this land was used and yields were 11.25 odt ha?1 yr?1. There are approximately 215,300 odt of forest biomass technically available annually around Tupper Lake from 211,500 ha of timberland. There are 781 ha of technically available agricultural land in this area so willow biomass production would be minimal. While these two areas have different land cover and land use characteristics, both have the potential to produce significant amounts of woody biomass.  相似文献   

13.
《Biomass & bioenergy》2006,30(4):370-377
Loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) trees, growing in International Paper Company's study of intensive management on marginal agricultural land near Bainbridge GA, were destructively sampled at the end of the sixth growing season. All trees were single family blocks of genetically superior trees planted 2.5 m apart on sub-soiled rows 3.6 m apart and grown with complete competition control. Management treatments were: control, irrigation, irrigation plus fertilization, and irrigation plus fertilization plus pest control. Tree measures were basal diameter, DBH, height of live crown, diameter at base of live crown, and total height. Twenty trees of each species were destructively sampled. Stems were sectioned at 1 m intervals, stem diameter determined at each end and sections were weighed green. Branches were removed and height, basal diameter, and length were measured on each branch. Branches were separated into foliated and unfoliated segments and weighed green. A stem disk and branch from each meter were returned to the lab to determine dry weight: green weight ratio. Foliated limb: foliage ratios were also determined from sub-sampled branches. Intensive culture resulted in larger growth differences for sweetgum (most intensive treatment 9.5 m tall, 13.1 cm DBH; control trees 5.0 m tall, 6.3 cm DBH) than in pine (most intensive treatment 10.3 m tall, 17.7 cm DBH; control, 7.6 m tall, 13.4 cm DBH). The pipe model of tree development explained dimensions of the upper 5 m of crown with leaf biomass highly correlated to branch basal area (r2 from 0.697 to 0.947). There was a constant ratio of leaf biomass to branch basal area (50 gm/cm2 for pine, 30 gm/cm2 for sweetgum). We also found a constant ratio of bole basal area to cumulative branch basal area throughout the crowns. Rapidly growing pines produced about 49 Mg ha−1 of stem biomass, 11 Mg ha−1 of dead branch biomass, and 17 Mg ha−1 of unfoliated branch biomass at the end of six years.  相似文献   

14.
《Biomass & bioenergy》2007,31(5):255-266
Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3€ m−3, the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m3 ha−1. If the harvestable pulpwood yield is over 20 m3 ha−1, integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable.  相似文献   

15.
Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7–10 sampled trees per stand was determined destructively. Dry weights of tree components (Wc; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (Wa) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha?1 at a stand age of 1 year to 153 t ha?1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed.  相似文献   

16.
《Journal of power sources》2006,158(2):1348-1357
Steam and autothermal reforming reactions of LPG (propane/butane) over high surface area CeO2 (CeO2 (HSA)) synthesized by a surfactant-assisted approach were studied under solid oxide fuel cell (SOFC) operating conditions. The catalyst provides significantly higher reforming reactivity and excellent resistance toward carbon deposition compared to the conventional Ni/Al2O3. These benefits of CeO2 are due to the redox property of this material. During the reforming process, the gas–solid reactions between the hydrocarbons present in the system (i.e. C4H10, C3H8, C2H6, C2H4, and CH4) and the lattice oxygen (OOx) take place on the ceria surface. The reactions of these adsorbed surface hydrocarbons with the lattice oxygen (CnHm + OOx  nCO + m/2(H2) + VO + 2e′) can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reactions (CnHm  nC + 2mH2). Afterwards, the lattice oxygen (OOx) can be regenerated by reaction with the steam present in the system (H2O + VO + 2e′  OOx + H2). It should be noted that VO denotes as an oxygen vacancy with an effective charge 2+.At 900 °C, the main products from steam reforming over CeO2 (HSA) were H2, CO, CO2, and CH4 with a small amount of C2H4. The addition of oxygen in autothermal reforming was found to reduce the degree of carbon deposition and improve product selectivities by completely eliminating C2H4 formation. The major consideration in the autothermal reforming operation is the O2/LPG (O/C molar ratio) ratio, as the presence of a too high oxygen concentration could oxidize the hydrogen and carbon monoxide produced from the steam reforming. A suitable O/C molar ratio for autothermal reforming of CeO2 (HSA) was 0.6.  相似文献   

17.
The boiling in cross-flow is investigated for coated tubes (low-porosity, flame-sprayed) in this paper. The effect of surface roughness on flow boiling heat transfer for a horizontal tube surface in cross-flow is studied for saturated boiling of water at atmospheric pressure. The parameters varied were for flow velocity up to 3.24 kg/s (G = 258.49 kg/m2 s), heat flux from 12 to 45 kW/m2, surface roughness (Ra) from 0.3296 to 4.731 μm. Nominal enhancement in heat transfer coefficient at higher mass flux may be attributed to the continued nucleation at the uppermost surfaces (in the wake region of the flow) of the rougher tubes thereby increasing the overall heat transfer rate. The flow boiling data was found to best fit the Kutateladze asymptotic equation h = hl[1 + (hnpb/hl)n]1/n with the value of n = 2.258 (which is close to the value of n = 2 suggested by Kutateladze).  相似文献   

18.
19.
Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10–31 m3 or 3–10 ton DM per hectare with the highest annual woody production of 45 m3 or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed.  相似文献   

20.
As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 × 108 tce in 2007 of which the crops straw is 1.42 × 108 tce, the forest biomass is 2.85 × 108 tce, the poultry and livestock manure is 4.40 × 107 tce, the municipal solid waste is 1.35 × 106 tce, and the organic waste water is 6.46 × 106 tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 × 1012 t of biomass briquettes fuel, 1.98 × 1012 m3 of low calorific value gas and 3.84 × 1011 m3 of biogas could be produced, 3.65 × 108 t to 4.90 × 108 t of coal consumption could be substituted, and 6.12 × 108 t to 7.53 × 108 t of CO2 emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure the national energy security and to mitigate the global warming trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号