首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过一步水热法成功制得氧化锌(ZnO)/石墨烯(GN)纳米复合材料。测试表明,ZnO/GN复合材料中纤锌矿结构的ZnO纳米棒直径100~200nm,均匀担载在GN网状结构中。ZnO/GN复合材料展现出了优异的电化学性能:在0.1A/g电流密度下的可逆放电比容量达1171mAh/g;0.4A/g充放电循环测试100次后,放电容量仍然维持在305mAh/g。  相似文献   

2.
采用高温固相法制备CrNbO_4,并首次研究其作为锂离子电池负极材料的电化学性能。使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)测试和电化学交流阻抗测试(EIS)对材料的结构、形貌和电化学性能进行表征。样品CrNbO_4在0.001~3.0V电压区间,电流密度为16 mA/g时,充放电50次后放电容量可以保持在63.5mAh/g。通过球磨,CrNbO_4的首次放/充电容量由212.9/100.9 mAh/g提高到572.3/343.5mAh/g,同时电流密度提高10倍,充放电50次后改性样品的放电容量仍可维持81.3mAh/g,有效提高了电化学性能。  相似文献   

3.
用溶胶-凝胶法将碳纳米管(CNT)包覆到天然石墨的表面,提高其充放电比容量和循环寿命性能,并研究了不同含量的碳纳米管对天然石墨电化学性能的影响。通过扫描电镜(SEM)、X射线衍射(XRD)和电化学测试等对CNT/天然石墨复合材料进行表征。结果表明,碳纳米管能在电极中构建空间三维导电网络,同时保留了天然石墨的晶体结构。随碳纳米管含量增加,复合材料的充放电比容量和循环稳定等电化学性能先升高后降低。碳纳米管包覆的质量分数为7%时,复合材料的综合性能最佳。在0.1C,CNT/天然石墨负极材料放电比容量为427mAh/g,比纯天然石墨(356mAh/g)提高了20%,循环100次后容量保持率仍有93.6%。  相似文献   

4.
用一种简单、成本低的方法制备出碳纳米管/硫复合材料.通过X射线衍射(XRD)和扫描电镜(SEM)表征产品的结构及形貌;通过充放电测试及循环伏安测试表征其电化学性能,复合材料首次放电比容量为539mAh/g.  相似文献   

5.
以膨润土作为单质硫的载体,热处理得到含硫50%(质量分数)的膨润土/硫复合材料,采用X射线衍射、扫描电镜、透射电镜和比表面分析仪对复合材料进行结构、形貌和孔径分析,通过充放电性能测试和交流阻抗对锂硫电池进行电化学性能分析。电化学测试结果表明,在1.0~3.0V电压范围内,以0.2、0.5C大小的电流密度对电池进行充放电性能测试,首次放电比容量分别为795.6和586.0mAh/g,100次循环后对应的放电比容量分别为488.5和421.5mAh/g,容量保持率分别为61.3%和71.8%。  相似文献   

6.
以酚醛树脂为碳源,利用固相反应合成了Li0.99Y0.01FePO4/C复合材料。采用X射线衍射分析(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)以及恒电流充放电等方法对该材料的晶体结构、表面形貌、界面结构及电化学性能进行表征。结果表明,所合成的Li0.99Y0.01FePO4/C材料为单一的橄榄石晶体结构,包覆碳后的复合材料颗粒形成了良好的导电网络,电化学性能得到很大改善。在0.1C的电流密度下进行充放电时,首次放电容量为143.43mAh/g,充放电效率为90.54%,在1.0C的电流密度下进行充放电时的首次放电容量仍有101.17mAh/g。  相似文献   

7.
通过溶液法制备钌/石墨烯(Ru/G)复合材料,用作锂-空气电池的正极材料。通过充放电测试、循环伏安(CV)和电化学阻抗(EIS)研究了锂-空气电池的电化学性能。结果表明:Ru/G复合材料作为锂-空气电池的正极材料,明显提高了氧化还原反应的催化活性,改善了电化学反应性能。在电流密度为500mA·g-1时,首次充放电比容量分别为13136mAh·g-1和13578mAh·g-1,充放电的过电位降低了约0.35V。当固定充放电比容量为1000mAh·g-1,采用恒流充放电模式,可稳定循环30次。  相似文献   

8.
以钛酸四丁酯和氢氧化锂为原料,采用水热法和高温固相结合方法,合成了碳氮/石墨烯改性的钛酸锂(Li_4Ti_5O_(12),LTO)复合材料,通过X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和恒电流充放电仪等,对LTO复合材料进行表征及测试。发现改性后的LTO复合材料,在大倍率5.0C充放电条件下,其放电比容量可达到107.3mAh/g,200次循环后,LTO复合材料的放电容量为86.4mAh/g。与未改性的LTO相比,碳氮/石墨烯改性的LTO复合材料的电化学性能明显提高。  相似文献   

9.
以氧化石墨(GO)和硝酸镍为原料,采用水热法制备氢氧化镍/还原氧化石墨烯(Ni(OH)_2/RGO)复合材料,通过FT-IR光谱、X射线衍射仪和扫描电镜表征了材料的形貌和结构,并采用循环伏安法、恒流充放电和交流阻抗谱测试了复合材料的电化学性能。结果表明,当水热温度为100℃时,制备了具有α相与β相互嵌型的α/β-Ni(OH)_2/RGO复合材料。在电解液为6 mol/L的KOH溶液中,放电倍率0.2C时复合材料比容量高达388.6mAh/g,放电倍率为10C时,复合材料比容量为266.1mAh/g,比容量保持率为68.5%,显现出良好的电化学性能。  相似文献   

10.
以活性炭和升华硫为原料,采用熔融法、气相法和真空浸渍法制备硫/碳复合正极材料,通过碳硫分析、粒度测试、X射线衍射(XRD)、扫描电子显微镜(SEM)、BET及孔径分布来表征材料的结构,并用恒流充放电测试考察了所得材料的电化学性能。结果表明,气相负载法制备的复合材料具有更好的电化学性能,在15mA/g电流密度下首次放电比容量为768mAh/g,不同电流密度循环24次后容量仍有405mAh/g。  相似文献   

11.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

12.
为了抑制锂硫电池的“穿梭效应”,改善锂硫电池的电化学性能。正极片掺杂羟基化多壁碳纳米管(MWCNTs—OH),利用亲水性羟基官能团对多硫化物的吸附作用,阻止多硫化物的扩散,增加有效物质的利用率,抑制穿梭效应的产生,提高锂硫电池的容量和循环性能。利用TEM、SEM和EDS等进行结构和性能表征。电化学测试结果表明,掺杂MWCNTs—OH的锂硫电池,放电容量明显提高。在0.1 C倍率,首次放电比容量达到1 281 mAh/g,首次库伦效率接近96.7%,循环10次后比容量还保持在882 mAh/g。在0.2 C、0.5 C和1 C倍率下充放电时,电池首次放电比容量分别达到794.2 mAh/g、712.2 mAh/g和557.3 mAh/g,显示出极佳的倍率性。   相似文献   

13.
通过简单的刮涂工艺成功地在铜箔表面制备出具有三维网络结构的ZnO-C复合涂层。采用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)和透射电镜(TEM)对复合涂层的晶体结构及微观形貌进行研究。结果表明: 该涂层由宽度为0.1~1 μm的碳基枝条相互连接形成连续的三维网络结构, 碳基枝条内包含ZnO纳米粒子和尺寸约为2 nm的微孔。该涂覆在铜箔表面的复合涂层可直接用作锂离子电池的负极。电化学测试结果表明: ZnO-C复合涂层负极材料在0.1 A/g电流密度下经过100次循环后的比容量为855 mAh/g, 并且在循环过程中未出现容量衰减现象; 在5A/g大电流密度下的比容量为418 mAh/g, 是0.1 A/g电流密度下比容量的51.3%。  相似文献   

14.
以2-乙基己酸亚锡为原料, 通过静电纺丝以及随后在惰性气氛中煅烧成功制备出电化学性能优良的SnO2-C复合纤维。X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、热重分析(TGA)、扫描电镜(SEM)和透射电镜(TEM)的分析结果表明: SnO2-C复合纤维具有无定形结构, 直径为100~300 nm, 含碳量约38%。电化学测试结果表明: 在50 mA/g的电流密度下, 无定形SnO2-C复合纤维的首次放电比容量、充电比容量和库仑效率分别为1370.1 mAh/g、757.5 mAh/g和55.28%; 在50 mA/g的电流密度下循环80次后, SnO2-C复合纤维的比容量为611.6 mAh/g, 没有出现明显的容量衰减。SnO2-C复合纤维高的比容量和良好的循环性能归因于其SnO2均匀分布的SnO2-C复合一维结构。  相似文献   

15.
以改良Hummers法制备了氧化石墨烯(GO),通过水热以及热处理制备了MoS_2@GO复合材料,探讨了MoS_2与GO物质的量比对复合材料结构、电化学性能的影响。结果表明,当MoS2与GO的物质的量比为1∶1时,所得复合材料呈现三维絮状结构并具有良好的电化学性能。其作为锂离子电池负极材料,在0.1A/g电流密度下,50次循环后放电比容量仍有879mAh/g,容量基本没有衰减。在2A/g的高电流密度下还能保持530mAh/g,当电流密度从2A/g恢复到0.1A/g,循环容量能恢复到0.1A/g时的水平,表现出优异的倍率性能。  相似文献   

16.
碳源对LiFePO_4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
以FePO_4·2H_2O、Li_2CO_3和柠檬酸/酒石酸/抗坏血酸为原料,经机械球磨后在惰性气氛中高温煅烧合成LiFePO_4/C正极材料.研究了不同碳源对LiFePO_4结构、形貌及电化学性能的影响.重点考察了碳源为酒石酸时,不同合成温度对材料性能的影响.采用XRD、SEM以及电化学测试等手段对目标产物进行了结构表征和性能测试.结果表明,以酒石酸做碳源时,合成的正极材料物相单一,颗粒细小,粒度均匀,并且具有优良的电化学性能.在室温下以0.1C倍率充放电,首次放电比容量可达155mAh/g,1.0C首次放电比容量为120mAh/g,经过100次循环以后容量仍有109mAh/g.  相似文献   

17.
通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO_4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO_4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO_4的电化学性能。电化学测试结果表明,在0.1C时LiFePO_4的放电比容量为155mAh/g,LiFePO_4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO_4/石墨烯复合材料的放电比容量分别为140,119mAh/g。  相似文献   

18.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

19.
球磨对ZnO的结构、形貌和电化学性能的影响   总被引:1,自引:0,他引:1  
通过机械球磨对ZnO粉末进行处理. 采用XRD、SEM对不同球磨时间的ZnO粉末的相结构和形貌进行表征, 用恒电流充放电实验研究其在锌镍电池体系中的放电特性和循环稳定性, 并结合循环伏安法探讨其充放电机理. 实验结果表明, 球磨过程中位错的形成和运动导致晶粒尺寸的减小和晶格应变值的增大, 晶粒尺寸由135.6 nm减小至17.9 nm, 晶格应变值相应地从0.06%增加到0.57%. 球磨处理提高了ZnO粉末的电化学反应活性, 因而其放电容量逐渐增加. 当球磨时间达到100 h时, ZnO的放电容量达到300.6 mAh/g, 比未球磨的高50 mAh/g.  相似文献   

20.
通过水热法制备了石墨烯包覆量不同的石墨烯/富锂三元正极复合材料。采用X射线衍射仪、扫描电子显微镜和电化学交流阻抗等对包覆后富锂三元正极复合材料的物相结构、形貌及电化学性能进行了研究。结果表明:石墨烯包覆量为2%(质量分数)时,包覆效果较好,石墨烯/富锂三元正极复合材料首次库仑效率为89.6%,比富锂三元正极材料提高了17.16%,放电比容量为226.41mAh/g,比原材料提高了21.38mAh/g;以0.5C循环100次后石墨烯/富锂三元正极复合材料放电比容量可保持在154mAh/g,容量保持率为88%,比富锂三元正极材料提高了5.3%;石墨烯/富锂三元正极复合材料阻抗为75Ω,比富锂三元正极材料阻抗低50Ω。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号