首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenotypic and genotypic methods were used to identify filamentous fungi that characterize traditional Italian Fossa cheese and its ripening environment. After ageing for 60 days at a dairy, it was ripened for an additional three months in a pit. In the fully ripened cheese, moulds ranged from 3 to 3.4 log cfu g?1 and Penicillium was the prevalent species. Pit environmental fungi ranged from 530 to 750 cfu m?3 (air) and from 130 to 340 cfu cm?2 (surfaces). The dominant pit strains were Alternaria spp., Aspergillus spp., Cladosporium spp. and Penicillium spp. Phylogenetic analyses of 18S rRNA gene and ITS1-5.8S-ITS2 regions highlighted Penicillium camemberti, Aspergillus nidulans and Aspergillus versicolor as traceable species occurring in both the cheese and pit environment, suggesting their involvement in the development of typical Fossa cheese characteristics. This approach may be used for the identification of microflora on other cheese varieties to better understand the fungal contribution in cheese ripening.  相似文献   

2.
Activation energy of flow (Ea) between 30 and 44 °C was calculated from temperature sweeps of cheeses with contrasting characteristics to determine its usefulness in predicting rheological behavior upon heating. Cheddar, Colby, whole milk Mozzarella, low-moisture part-skim Mozzarella, Parmesan, soft goat, and Queso Fresco cheeses were heated from 22 to 70 °C, and Ea was calculated from the resulting Arrhenius plots. Protein and moisture content were highly correlated with Ea. The Ea values for goat cheese and Queso Fresco, which did not flow when heated, were between 30 and 60 kJ mol?1. Cheddar, Colby, and the Mozzarellas did flow upon heating, and their Ea values were between 100 and 150 kJ mol?1. Parmesan, the hardest cheese, flowed rapidly with heat and had an Ea > 180 kJ mol?1. Ea provides an objective means of quantitating the flow of cheese, and together with elastic modulus and viscous modulus provides a picture of the behavior of cheese as it is heated.  相似文献   

3.
Water activity (aw) is a major factor affecting pathogen heat resistance in low-moisture foods. However, there is a lack of data for aw at elevated temperatures that occur during actual thermal processing conditions, and its influence on thermal tolerance of pathogens. The objective of this study was to gain an in-depth understanding of the relationship between temperature-induced changes in aw and thermal resistance of Salmonella in all purpose flour and peanut butter at elevated temperatures (80 oC). Equilibrium water sorption isotherms (water content vs. water activity) for all purpose wheat flour and peanut butter over the range of 20 to 80 °C were generated using a vapor sorption analyzer and a newly developed thermal cell. The thermal resistance (D80-values) of Salmonella in all purpose wheat flour and peanut butter with initial aw of 0.45 (measured at room temperature, ~ 20 °C) was determined via isothermal treatment of small (< 1 g) samples. When increasing sample temperature from 20 to 80 °C in sealed cells, the aw of all purpose flour increased from 0.45 to 0.80, but the aw of peanut butter decreased from 0.45 to 0.04. The corresponding estimated D80-values of Salmonella in all purpose flour and peanut butter with 20 oC aw of 0.45 were 6.9 ± 0.7 min and 17.0 ± 0.9 min, respectively. The significantly (P < 0.05) higher D80-value of Salmonella in peanut butter than in all purpose flour may be partially attributed to the reduced aw in peanut butter in comparison to the increased aw in all purpose flour at 80 °C. The improved understanding of temperature-induced changes in aw of low-moisture products of different composition provides a new insight into seemly unpredictable results, when using heat treatments to control Salmonella in such food systems.  相似文献   

4.
《Meat science》2013,93(4):409-416
In this work, the effect of pre-incubation conditions (temperature: 10, 15, 37 °C; pH 5.5, 6.5 and water activity, aw: 0.997, 0.960) was evaluated on the subsequent growth, survival and enterotoxin production (SE) of Staphylococcus aureus in cooked chicken breast incubated at 10 and 20 °C. Results showed the ability of S. aureus to survive at 10 °C when pre-incubated at low aw (0.960) what could constitute a food risk if osmotic stressed cells of S. aureus which form biofilms survive on dried surfaces, and they are transferred to cooked meat products by cross-contamination. Regarding growth at 20 °C, cells pre-incubated at pH 5.5 and aw 0.960 had a longer lag phase and a slower maximum growth rate. On the contrary, it was highlighted that pre-incubation at optimal conditions (37 °C/pH 6.5/aw 0.997) produced a better adaptation and a faster growth in meat products what would lead to a higher SE production. These findings can support the adoption of management strategies and preventive measures in food industries leading to avoid growth and SE production in meat products.  相似文献   

5.
《International Dairy Journal》2003,13(2-3):221-230
The physico-chemical characteristics, proteolysis (classical nitrogen fractions, caseins and their degradation products and free amino acids), and lipolysis (fat acidity and free fatty acids) were studied throughout the ripening of three batches of Babia-Laciana cheese, a Spanish traditional variety made from raw goats’ milk. The main compositional characteristics of this cheese at the end of the ripening are its high content of total solids (TS) (78.0±2.4 g 100 g−1 of cheese) and fat (61.1±1.2 g 100 g−1 of TS), the presence of residual lactose (1.6±0.8 g 100 g−1 of TS) and its low content of sodium chloride (1.1±0.7 g 100 g−1 of TS) and ash (2.8±0.5 g 100 g−1 of TS). Its pH values (4.44±0.72) are extraordinarily low. The evolution and final values of the different nitrogen fractions show that this cheese undergoes a very slight proteolysis, a fact which was corroborated when the caseins and their degradation products were quantified: β-casein did not undergo any modification throughout ripening, while only 21% of the αs-caseins were degraded. Free amino acids content increased by a factor of about 7 throughout ripening, resulting in a high content of γ-amino butyric acid and a low content of glutamic acid at the end of the process. Fat acidity increased very slightly, approximately 4.5 times, during ripening, reaching final values of 3.5±2.2 mg KOH g−1 of fat. The total free fatty acids content showed a similar evolution to fat acidity. At the end of the ripening process, the main free fatty acid was C18:1, followed by C16 and C10.  相似文献   

6.
The objective of this study was to use mechanical and acoustic methods developed in our laboratory to monitor the changes in crispiness of a Crackerbread biscuit following equilibration at different water activities (aw). Crackerbread samples were equilibrated at aw of 0.113–0.98. The equilibrated Crackerbread samples were punctured with a cylindrical probe (5 mm) using an Instron Universal Testing Machine. The force and acoustic signals were simultaneously captured using Labview software. Changes in parameters associated with crispiness were modelled using Fermi’s equation. The number of sound peaks, force and sound curve lengths and area under sound amplitude–time curve decreased with increasing aw. The sound frequency decreased linearly (R2 = 0.926) with increasing aw. The critical water activity (awc) of Crackerbread ranged between 0.51 and 0.59. Acoustic parameters were more sensitive to aw-induced changes in Crackerbread occurring at awc than mechanical parameters.  相似文献   

7.
The effect of two antifungal compounds (natamycin, pine-resin), temperature and water activity, on the growth rate, lag phase duration and Ochratoxin A (OTA) production by three Aspergillus carbonarius isolates (Ac-28, Ac-29, and Ac-33), was studied by means of Response Surface Methodology (RSM) based on a Central Composite Design (CCD). Two different experimental designs were performed as a function of temperature (16.6–33.4 °C), water activity (0.90–0.97 aw), natamycin (0–1000 ng ml 1) or pine-resin (0–2.61%, w/v) on a Synthetic Grape-juice Medium (SGM). OTA production was analyzed after 5, 10 and 15 days of incubation. A second-order polynomial model was fitted to each response parameter to assess the growth and OTA potential of all fungal isolates. Results showed that natamycin, aw and temperature had significant effects on the lag phase duration of all isolates, as well as on OTA accumulation after 10 days of incubation for Ac-29 and 15 days for Ac-28 and Ac-33 isolates. The same results were obtained for OTA production after treatment with pine-resin. However, fungal growth rates were not statistically significant in both experiments, with the exception of Ac-29 and Ac-33 after treatment with pine-resin. Overall, high natamycin concentrations (800 and 1000 ng ml 1) delayed fungal growth depending on the environmental factors assayed. Moreover, treatment with pine-resin at 16.6 °C/0.94 aw/1.1% w/v, as well as at 25 °C/0.90 aw/1.1% w/v, completely inhibited fungal growth up to 15 days of incubation.  相似文献   

8.
《Meat science》2010,84(4):642-646
The aim of this study was to obtain and compare water desorption isotherms of ground meat containing NaCl (0.107 kg NaCl/kg raw-meat dry matter) and/or K-lactate as NaCl substitute at two different levels of molar substitution (30% and 100%). A thin layer of salted ground meat was dried and sampled at pre-determined times. The moisture content of the samples and their water activities (aw) were measured at 5 °C and 25 °C. Results showed that ground meat with NaCl and/or different K-lactate contents had a similar water desorption isotherm for aw ranging from 0.7 to 1.0. Below 0.7, the water equilibrium content fell with small decreases in aw faster for meat with NaCl than for meat with K-lactate. K-lactate could reduce the excessive hardening at the surface of salted meat products. Experimental desorption isotherms were compared to those estimated using two approaches of the Ross equation. Models provided a good fit for the experimental data.  相似文献   

9.
High hydrostatic pressure (HHP) treatments can improve the potential of orange, mango, and prickly pear peels as food formulation fiber sources. Akaike Information Criteria differences identified Peleg and GAB as the best model alternatives to describe experimental moisture isotherms. HHP (600 MPa/10 min/22 and 55 °C) effects on moisture isotherms expressed as relative water sorption content change with respect to controls (RWSCaw) showed that in the 0.1–0.93 aw range, HHP improved the adsorption water retention of orange peels. The same was true for the desorption water retention for all HHP-treated fruit peels except for prickly pear HHP-treated at 22 °C and > 0.35 aw. The area under the hysteresis curve (AH) in the 0.15–0.51 aw range showed that HHP increased hysteresis for all fruit peels tested. All this illustrates the HHP potential to modify the hygroscopic properties of fruit peels at lower temperature and in less processing time than conventional processes.Industrial relevanceOrange, mango, and prickly pear peels are potential food fiber formulation sources with differentiated hygroscopic and functional properties. In this study, 600 MPa treatments at 22 and 55 °C for 10 min modified the adsorption and desorption moisture retention capacity of all fruit peels tested in this study. HHP technology can improve the potential of fruit peels as dietary fiber sources with the advantage of shorter processing times and lower temperatures than conventional technologies used to treat food fibers.  相似文献   

10.
High pressure processing (HPP) is a promising food preservation technology as an alternative to thermal processing for microbial inactivation. The technological parameters, the type of microorganism, and the food composition can greatly affect the microbicidal potential of HPP against spoilage and pathogenic microorganisms. Presently, the number of available models quantifying the influence of food characteristics on the pathogen inactivation is scarce. The aim of this study was to model the inactivation of Listeria monocytogenes CTC1034 in dry-cured ham, as a function of pressure (347–852 MPa, 5 min/15 °C), water activity (aw, 0.86–0.96) and fat content (10–50%) according to a Central Composite Design. The response surface methodology, based on the equation obtained with a stepwise multivariate linear regression, was used to describe the relationship between bacterial inactivation and the studied variables. According to the best fitting polynomial equation, besides pressure intensity, both aw and fat content exerted a significant influence on HP-inactivation of L. monocytogenes. A clear linear piezoprotection trend was found lowering the aw of the substrate within the whole range of tested pressure. Fat content was included in the model through the quadratic term and as interaction term with pressure, resulting in a particular behavior. A protective effect due to the presence of high fat content was identified for pressure treatments above ca. 700 MPa. At lower pressure, higher inactivation of L. monocytogenes occurred by increasing the fat content above 30%. The results emphasize the relevant influence of intrinsic factors on the L. monocytogenes inactivation by HPP, making necessary to assess and validate the effectiveness of HPP on specific food products and consequently set process criteria adjusted to each particular food product.  相似文献   

11.
A microbiological, compositional, biochemical and textural characterisation of the pasta filata Caciocavallo Pugliese cheese during ripening is reported. Fully ripened cheese contained a total of ca. log 8.0 cfu g−1 mesophilic bacteria and ca. log 6.0 cfu g−1 presumptive staphylococci, while the number of thermophilic and mesophilic rod and coccus lactic acid bacteria varied during ripening. A two-step RAPD-PCR protocol was used to differentiate biotypes. The natural whey starter was composed mainly of Lactobacillus delbrueckii, Lb. fermentum, Lb. gasseri, Lb. helveticus and Streptococcus thermophilus strains. After day 1 of ripening, Lb. delbrueckii became dominant and some strains of Enterococcus durans and E. faecalis appeared. Non-starter lactic acid bacteria, such as Lb. parabuchneri and Lb. paracasei subsp. paracasei formed a large part of the lactic microflora at 42 and 60 d of ripening. The level of pH 4.6-soluble nitrogen increased from the outer to the inner of the cheese and also increased in each section as ripening progressed, attaining values of 18–15%. Urea-PAGE electrophoresis showed that degradation of αs1-casein was more rapid than that of β-casein throughout ripening and the rates at which both caseins were degraded greatly increased from the outside to the inside of the cheese. Based on the primary proteolysis products, both chymosin and plasmin appeared to be active. RP-HPLC profiles of the 70% ethanol-soluble, pH 4.6-soluble nitrogen, showed a large number of peaks, indicating a heterogeneous mixture of proteolytic products. There were both age- and section-related changes in the area of the different peptide peaks. Butyric (C4:0), caproic (C6:0), palmitic (C16:0) and oleic (C18:1) acids were the free fatty acids found at the highest concentrations. The level of short chain fatty acids (e.g., butyric and caproic) decreased from the middle and inner to outer sections of the cheese. Peptidase activity in the curd was pronounced, increased during ripening and varied with the cheese section. The greatest increase of the peptidase activity coincided with a change in the lactic microflora and with the prevalence of non-starter lactic acid bacteria. Microbial esterases were supposed to be active together with rennet paste. Little change in the firmness and fractures stress during maturation were found by textural analyses of the raw cheese. The flowability was similar to that of typical low-moisture Mozzarella cheese, while stretchability was lower. The heat-induced changes in phase angle of Caciocavallo Pugliese cheese indicated a phase transition from largely elastic rheological characteristics in unheated cheese to a more viscous and fluid character in melted cheese.  相似文献   

12.
The changes in the fundamental textural properties of the Canestrello Pugliese cheese, during ripening, were studied, accounting for the internal and external portions of the cheese. The cheese was ripened at 12–14 °C and 80% relative humidity and analyzed at 0, 15, 30, 45, 60, 95, and 120 days to determine the moisture content, water activity (Aw), pH values and some fundamental-mechanical and dynamic-mechanical properties such as the elastic modulus (Ec), storage modulus (G′), loss modulus (G″) and relaxation times distribution curve. Significant differences in the moisture content, Aw, pH and the elastic modulus were observed for the inside and outside portions of the investigated cheese. In particular, for the first 60 days of ripening the elastic modulus of the outer region was higher than that of the inner region. As the ripening process approached the end of the fourth month the contrary was true. Moreover, results show that, above all the pH and Aw play a major role in determining the mechanical properties of the Canestrello Pugliese cheese during ripening.  相似文献   

13.
《International Dairy Journal》2000,10(5-6):383-389
The mesophilic lactobacilli colonizing Fiore Sardo ewe's milk cheese were characterized. They seemed to be the dominant non-starter lactic acid bacteria composing its natural microflora, with a viable cell number varying from 105 CFU g−1 (1-day-old cheese) to 108 CFU g−1 (30-day-old cheese) and then slowly decreasing up to 104 CFU g−1 after 7 months’ ripening. Considering the relevance of mesophilic lactobacilli in affecting the cheese ripening, a PCR-based taxonomic identification of the Lactobacillus species isolated was performed. Cheese samples were collected from 3 farms and 457 isolates from cheeses at different ripening times were analysed with species-specific primers for L. plantarum, L. casei group, L. paracasei, L. casei, L. rhamnosus, L. pentosus, L. paraplantarum, L. curvatus, L. graminis and L. sake. L. plantarum and L. paracasei were the most frequently detected species. Moreover, the development and the evolution during ripening of the facultatively heterofermentative Lactobacillus species (FHL) were different in the three batches of cheese.  相似文献   

14.
The adsorption isotherms of gum Arabic (GA), mesquite gum (MG), and maltodextrin DE 10 (MD), and a blend of the three gums (17%GA–66%MG–17%MD) were determined at 25, 35, and 40 °C. All isotherms were fitted using the GAB model and the thermodynamic properties (enthalpies and entropies, differential and integral) were estimated by the Clausius–Clapeyron method. The minimum integral entropy was considered as the point of maximum stability where strong bonds between the adsorbate and adsorbent occurred, and water is less available and likely to participate in spoilage reactions. The point of maximum stability was found between 12.24 and 14.68 kg H2O/100 kg d.s. (corresponding to water activity, aw, of 0.32–0.57) for GA, 12.12–14.27 kg H2O/100 kg d.s. (aw = 0.33–0.55) for MG, and 11.37–13.84 kg H2O/100 kg d.s. (aw = 0.28–0.55) for the biopolymer blend, in the temperature range studied.  相似文献   

15.
The influence of various environmental factors on Enterobacter sakazakii inactivation by pulsed electric fields was studied and the mechanisms underlying the changes in resistance were also explored. E. sakazakii PEF resistance was higher upon entering the stationary growth phase, but it did not significantly change with growth temperature. E. sakazakii cells were also more resistant to PEF in both acidified and low water activity media. Thus, for stationary-phase cells grown at 30 °C a treatment of 50 pulses at 31 kV/cm led to 5.1 log10 cycles of inactivation in media of pH 7.0 (aw > 0.99), 1.4 log10 cycles in media of pH 4.0 (aw > 0.99) and 0.3 log10 cycles in media of aw = 0.98 (pH 7.0). However, whereas the higher PEF tolerance in acid media was coincident with an increased number of cells capable of repairing their sublethally-injured cytoplasmic membranes, the higher resistance in media of lower water activity was not. To the best of our knowledge, this is the first time that sublethal injuries in outer membrane after PEF treatments have been found.Industrial relevanceThis work provides data about PEF inactivation kinetics and PEF resistance of E. sakazakii under several conditions that might be useful for designing food pasteurization processes by PEF technology. The occurrence of sublethal injuries in cytoplasmic and outer membranes under the most protective treatment conditions, gives the chance to develop combined processes that might increase the effectiveness of the PEF process.  相似文献   

16.
The antimicrobial activity of two pediocin-producing transformants obtained from wild strains of Lactococcus lactis on the survival of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 during cheese ripening was investigated. Cheeses were manufactured from milk inoculated with the three pathogens, each at approximately 6 log cfu mL−1. Pediococcus acidilactici 347 (Ped+), Lc. lactis ESI 153, Lc. lactis ESI 515 (Nis+) and their respective pediocin-producing transformants Lc. lactis CL1 (Ped+) and Lc. lactis CL2 (Nis+, Ped+) were added at 1% as adjuncts to the starter culture. After 30 d, L. monocytogenes, S. aureus and E. coli O157:H7 counts were 5.30, 5.16 and 4.14 log cfu g−1 in control cheese made without adjunct culture. On day 30, pediocin-producing derivatives Lc. lactis CL1 and Lc. lactis CL2 lowered L. monocytogenes counts by 2.97 and 1.64 log units, S. aureus by 0.98 and 0.40 log units, and E. coli O157:H7 by 0.84 and 1.69 log units with respect to control cheese. All cheeses made with nisin-producing LAB exhibited bacteriocin activity throughout ripening. Pediocin activity was only detected throughout the whole ripening period in cheese with Lc. lactis CL1. Because of the antimicrobial activity of pediocin PA-1, its production in situ by strains of LAB growing efficiently in milk would extend the application of this bacteriocin in cheese manufacture.  相似文献   

17.
Non-uniform heating is a major challenge for using radio frequency (RF) heat treatment in pasteurization of low moisture food products. The objective of this study was to evaluate the effect of different electrode gaps, moisture content (MC), bulk density and surrounding materials on RF heating uniformity and rate in corn flour. Additionally, the dielectric and thermal properties of corn flour were determined as affected by MC, temperature (°C), and frequency (MHz). Changes in MC, water activity (aw) and color in the sample after RF heating were measured to evaluate treatment effect on food quality. A precision LCR meter and a liquid test fixture were used to study DP of the sample at RF frequency ranging from 1 to 30 MHz. The RF heating uniformity and temperature profiles of corn flour as exposed to RF heating were obtained with an infrared camera and a data logger connected to a fiber optic sensor. The DP values increased with increasing MC and temperature, but decreased with frequency. The heating rate increased from 3.5 to 6.8 °C min 1 with increasing MC (from 10.4 to 16.7%), but decreased from 12.7 to 5.2 °C min 1 with increasing electron gap (from 11 to 15 cm). The corner and edge heating were observed at all layers of the samples for all the distances, and the hottest and the most uniform layer were determined as the middle layer at an electrode gap of 15 cm. Glass petri dish provided better uniformity than those of polyester plastic petri dish. Covering by foam led to more uniform RF heating uniformity in corn flour, and better moisture and aw distribution. This study provided useful information to develop an effective RF process as an alternative of conventional thermal treatments for pasteurization of low-moisture products.Industrial relevanceThis paper describes a novel methodology based on Radio Frequency heating to pasteurize food powder while maintaining the quality. The study addresses the ever-increasing global demand from consumers for safe food products.  相似文献   

18.
Aqueous extracts obtained from cell suspension cultures of Centaurea calcitrapa were used as proteolytic additive in the manufacture of a commercial bovine cheese, coagulated with animal rennet and typically ripened for 28 d. The cheese was assessed in comparison to standard cheese for two levels of addition of said extract, viz. 0.61 and 1.22 mg of total protein mL−1. The qualitative and quantitative evolutions of the nitrogen fractions were monitored in the experimental cheeses throughout the whole ripening period. In general, the chemical compositions of the cheeses were different depending on the amount of extract used, but no significant differences could be detected in the ripening index. With regard to electrophoretic profiles, the two types of cheese could be distinguished until up to ca. 7 d of ripening, but differences did essentially vanish by 28 d.  相似文献   

19.
Antimicrobial active films represent an innovative concept in food packaging, developed to answer to consumer's expectation for better microbiological safety. In this study, the growth of pathogenic micro-organisms on the surface of food is proposed to be controlled by coating, on the surface of polyethylene/polyamide/polyethylene film (PE/PA/PE), a film-forming solution containing Nisaplin, a commercial form of bacteriocin produced by Lactococcus lactis subsp. lactis: nisin. The bioactivity of these multi-layer films coated with Nisaplin loaded HydroxyPropylMethylCellulose film is based on the release of this antimicrobial molecule towards a food simulant. Nisin mass transfer was studied and modeled, for different operating conditions, generally encountered in food products. pH didn't seem to interfere with nisin release kinetics, while the variation of NaCl concentration between 0.8% and 3.2% decreased the desorption coefficient (kd) by 18% and the temperature increase from 10 °C to 28 °C resulted in an increase of kd from 1.78 × 10? 2 m s? 1 to 2.10 × 10? 2 m s? 1. Coating of PE/PA/PE film with this antimicrobial layer induced little mechanical properties modifications without compromising industrial applications. Water barrier capacity was not altered.Industrial relevanceThis paper concerns active packaging, considered as a new approach to preserve food shelf life. Active packaging is a real gain for plastic and Food industrials. Coating was used to obtain antimicrobial packaging. The impact of coating on film characteristics is investigated.Also, antimicrobial agent desorption is determined during storage conditions.  相似文献   

20.
The contributions of the coagulant Cynara cardunculus and of the microflora of raw milk to the volatile-free fatty acid profile of Serra da Estrela cheese were evaluated. The experimental design included both a model system and, dual cheeses. The study in the model system showed that isovaleric acid was the predominant volatile compound after 7 d of ripening. The systems inoculated with Enterococcus faecium produced the highest amount of this volatile (ca. 135.8 mg kg−1 curd), while those inoculated with Lactobacillus plantarum produced the least (21.4 mg kg−1 curd); Lactococcus lactis produced moderate amounts (ca. 34.2 mg kg−1 curd) but a total amount of volatile-free fatty acids similar to those found in control samples. This is considered advantageous since this volatile fatty acid confers a harsh, piquant, mature flavour to cheese, coupled with the realisation that excess volatiles may result in off-flavours. The addition of cultures in experimental cheeses helped reduce ripening time to about one half. Inclusion of Lb. plantarum led to cheeses containing the highest amounts of volatiles, and exhibiting an aroma closest to that of typical Serra da Estrela cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号