首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.  相似文献   

2.
介绍CO2汽提法尿素装置合成系统的NH3/CO2的控制方法,合成系统NH3/CO2异常的症状,判断方法,偏离正常时的处理和防范措施。  相似文献   

3.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture.  相似文献   

4.
能源危机和环境污染是当今世界发展面临的两大挑战,如何有效缓解煤、石油等不可再生化石资源过度消耗所引发的能源危机,以及由此造成CO2过量排放引起的温室效应问题,是当前人类发展亟待解决的重大科学问题之一。基于此,本文综述了近年来以TiO2为光催化剂,以绿色、清洁的太阳光能催化还原CO2成低价态含碳燃料(如CH4、CH3OH、HCHO、HCOOH、C2H5OH等)研究进展。在TiO2光还原CO2机理基础上,对元素掺杂、半导体复合与染料敏化、高活性晶面调控、低维纳米结构设计、助催化剂、Z型结构设计和单原子催化等方法来提高光还原CO2反应效率和选择性进行分析,并指出目前研究存在的关键问题和未来CO2光还原的发展方向。  相似文献   

5.
Chao Lu  Jin-Ming Lin   《Catalysis Today》2004,90(3-4):343-materials
Peroxynitrous acid (ONOOH) was formed by the on-line rapid reaction of acidified hydrogen peroxide with nitrite in a simple flow system. A weak chemiluminescent (CL) signal was observed due to the production of singlet oxygen (1O2) when ONOOH reacted with NaOH, whereas the replacement of NaOH by Na2CO3 markedly enhanced the CL intensity. The predominant CL-enhanced pathway was achieved by the carbonate-catalyzed decomposition of peroxynitrite (ONOO). Carbonate species was regenerated in the process, that is, carbonate acts as a catalyst. Based on the studies of CL and fluorescence spectra, a possible CL mechanism from the reaction of carbonate with ONOOH was proposed. In brief, ONOOH was an unstable compound in acidic solution and could be quenched into ONOO in basic media. It was suggested that ONOO reaction with excess HCO3 proceeded via one-electron transfer to yield bicarbonate ion radicals (HCO3√). The recombination of HCO3√ may directly generate excited triplet dimers of two CO2 molecules [(CO2)2*]. With the decomposition of this unstable intermediate to CO2, the energy was released by CL emission. The addition of uranine into carbonate solution caused enhancement of the CL signal, which was due to a part of excited triplet dimers of two CO2 molecules energy to transfer to uranine, resulting in two CL peaks.  相似文献   

6.
张东 《广东化工》2012,(4):23-25
CO2过度排放导致的环境问题使世界各国都在想方设法将其回收后埋存或利用。但是,CO2的资源地离利用地一般较远,而且CO2在常温常压下为气态,如何将CO2安全经济地运输到目的地成为二氧化碳捕集技术大规模利用的技术关键。研究表明,采用液体输送方式可以降低系统能耗和成本。文章分析对比了不同二氧化碳液化方法的优劣性,并探讨了管线输送中需要注意的问题。  相似文献   

7.
Nanosized NiO,CeO2 and NiO-CeO2 mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO2 nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO2 interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO2 is able to effectively adsorb CO2,forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO2 co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO2/H2 molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm3?h-1?gcat-1.Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO2 conversion was strongly affected by both the CO/CO2/H2 ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO2 methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the COx co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress.  相似文献   

8.
A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min1·cm2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.  相似文献   

9.
Cu/ZrO2 catalysts for methanol synthesis from CO2/H2 were respectively prepared by deposition coprecipitation (DP) and solid state reaction (SR) methods. There is an intimate interaction between copper and zirconia, which strongly affects the reduction property and catalytic performance of the catalysts. The stronger the interaction, the lower the reduction temperature and the better the performance of the catalysts. Surface area, pore structure and crystal structure of the catalysts are mainly controlled by preparation methods and alkalinity of synthesis system. The conversion of CO2 and selectivity of methanol are higher for DP catalysts than for SP catalysts.  相似文献   

10.
Berker Ficicilar  Timur Dogu   《Catalysis Today》2006,115(1-4):274-278
Carbon dioxide sorption rate parameters and sorption capacities on two different regenerable sorbents, namely hydrotalcite and activated trona, were investigated in a fixed bed flow adsorber, in the temperature range of 400–527 °C and 80–152 °C, respectively. Hydrotalcite, which was activated at 550 °C, was shown to give total and breakthrough CO2 sorption capacities as high as 1.16 and 0.70 mmol/g, respectively, at 452 °C, in the absence of water vapor. In the presence of excess water vapor, the total CO2 sorption capacity was not affected much, however a decrease in the breakthrough capacity and on the sorption rate constant was observed, especially at lower temperatures. In the presence of water vapor, activated trona was shown to give comparable total and breakthrough CO2 sorption capacities, at much lower temperatures (T < 100 °C). The deactivation model gave good predictions of the CO2 breakthrough curves and it was successfully used for the evaluation of the adsorption and the deactivation rate constants.  相似文献   

11.
The use of natural calcium carbonates as regenerable CO2 sorbents in industrial processes is limited by the rapid decay of the carbonation conversion with the number of cycles carbonation/calcination. However, new processes are emerging to capture CO2 using these cycles, that can take advantage of the intrinsic benefits of high temperature separations in energy systems. This work presents an analysis of a general carbonation/calcination cycle to capture CO2, incorporating a fresh feed of sorbent to compensate for the decay in activity during sorbent re-cycling. A general design equation for the maximum CO2 capture efficiency is obtained by incorporating to the cycle mass balances a simple but realistic equation to estimate the decay in sorbent activity with the number of cycles.  相似文献   

12.
ZrO2-doped CuZnO catalyst prepared by successive-precipitation method was investigated by ICP-AES, BET, TEM, XRD, EXAFS, H2-TPR and CO/CO2 hydrogenation. The active phase of copper in CuZnO catalyst prepared by co-precipitation method was well-crystallized. The presence of ZrO2 led to a high copper dispersion, which was distinctive from CuZnO. Though the activity for carbon monoxide hydrogenation was little lower than that of CuZnO catalyst, ZrO2-doped CuZnO catalyst showed much higher activity and selectivity towards methanol synthesis from carbon dioxide hydrogenation. Moreover, ZrO2-doped CuZnO catalyst showed high performance for methanol synthesis from CO2-rich syngas.  相似文献   

13.
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.  相似文献   

14.
Activation of CO2 and its utilization in the synthesis of chloropropene and styrene carbonates over functionalized, mesoporous SBA-15 solids, have been investigated. The surface basicity of SBA-15 was modified with nitrogen-based organic molecules of varying basicity viz., alkyl amines (–NH2), adenine (Ade), imidazole (Im) and guanine (Gua). The surface of SBA-15 was also functionalized with Ti4+ and Al3+ species. The acid–base properties of these modified SBA-15 materials were investigated by temperature-programmed desorption (TPD) and diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy. NH3 and pyridine were used as probe molecules for acid sites, while CO2 was used to characterize the basic sites. CO2 was activated at the basic amine sites forming surface carbamate species (IR peaks: 1609 and 1446 cm−1). The latter reacted further with epoxides adsorbed on the acid sites forming cyclic carbonates. A correlation between the intensity of the IR peak at 1609 cm−1 and cyclic carbonate yield has been observed. The cyclic carbonate yields were higher when both the acid and base functionalities were present on the surface. The Ti- and Al-SBA-15 functionalized with adenine exhibited the highest catalytic activity and selectivity. There is an optimal dependence (“volcanic plot”) of the yield of cyclic carbonates on the desorption temperature, Tmax(CO2) in the TPD experiments. These solid catalysts were structurally stable up to 473 K and could be recycled for repeated use. In addition to density, the strength and type of amine sites play a crucial role on CO2 activation and utilization.  相似文献   

15.
This paper presents a multi-scale model to simulate the multicomponent gas diffusion and flow in bulk coals for CO2 sequestration enhanced coalbed methane recovery. The model is developed based on a bi-dispersed structure model by assuming that coal consists of microporous micro-particles, meso/macro-pores and open microfractures. The bi-disperse diffusion theory and the Maxwell-Stefan approach were incorporated in the model, providing an improved simulation of the CH4—CO2/CH4—N2 counter diffusion dynamics. In the model, the counter diffusion process is numerically coupled with the flow of the mixture gases occurring within macro-pores or fractures in coal so as to account for the interaction between diffusion and flow in gas transport through coals. The model was validated by both experimental data from literature and our CO2 flush tests, and shows an excellent agreement with the experiments. The results reveal that the gas diffusivities, in particular the micro-pore diffusivities are strongly concentration-dependent.  相似文献   

16.
Surface-phase ZrO2 on SiO2 (SZrOs) and surface-phase La2O3 on Al2O3 (SLaOs) were prepared with various loadings of ZrO2 and La2O3, characterized and used as supports for preparing Pt/SZrOs and Pt/SLaOs catalysts. CH4/CO2 reforming over the Pt/SZrOs and Pt/SLaOs catalysts was examined and compared with Pt/Al2O3 and Pt/SiO2 catalysts. CO2 or CH4 pulse reaction/adsorption analysis was employed to elucidate the effects of these surface-phase oxides.

The zirconia can be homogeneously dispersed on SiO2 to form a stable surface-phase oxide. The lanthana cannot be spread well on Al2O3, but it forms a stable amorphous oxide with Al2O3. The Pt/SZrOs and Pt/SLaOs catalysts showed higher steady activity than did Pt/SiO2 and Pt/Al2O3 by a factor of three to four. The Pt/SZrOs and Pt/SLaOs catalysts were also much more stable than the Pt/SiO2 and Pt/Al2O3 catalysts for long stream time and for reforming temperatures above 700 °C. These findings were attributed to the activation of CO2 adsorbed on the basic sites of SZrOs and SLaOs.  相似文献   


17.
Coupled semiconductor (CS) Cu/CdS–TiO2/SiO2 photocatalyst was prepared using a mutli-step impregnation method. Its optical property was characterized by UV–vis spectra. BET, XRD, Raman and IR were used to study the structure of the photocatalyst. Fine CdS was found dispersed over the surface of anatase TiO2/SiO2 substrate. Chemisorption and IR analysis showed methane absorbed in the molecular state interacted weakly with the surface of catalyst, and the interaction of CO2 with CS produced various forms of absorbed CO2 species that were primarily present in the form of formate, bidentate and linear absorption species. Photocatalytic direct conversion of CH4 and CO2 was performed under the operation conditions: 373 K, 1:1 of CO2/CH4, 1 atm, space velocity of 200 h−1 and UV intensity of 20.0 mW/cm2. The conversion was 1.47% for CH4 and 0.74% for CO2 with a selectivity of acetone up to 92.3%. The reaction mechanisms were proposed based on the experimental observations.  相似文献   

18.
光热催化是一种极具前途的CO2还原策略,可利用太阳光谱的广泛吸收来激发热化学和光化学过程的结合,从而协同推动催化反应的进行,使CO2在较为温和的条件下实现高效转换。作为光热催化的一种,在光催化中引入热能,可提高太阳光利用率,促进载流子的激发和分离,加快反应分子扩散,提升反升性能。对当前光热催化CO2还原的概念和原理进行分类,并对热助光催化还原CO2反应的研究现状进行总结。基于反应产物的差异,介绍热助光催化反应的催化剂选择、反应条件和反应机理,同时介绍了该类反应试验过程中关键的局部测温技术,最后对热助光催化CO2还原技术的发展进行了展望,未来的研究重点应是提升CO2转化率和产物选择性,同时利用先进的原位表征技术和理论计算对反应机理进行探究。  相似文献   

19.
综述了近年来介孔硅分子筛负载型吸附剂、聚合物负载型吸附剂、沸石负载型吸附剂、活性炭等不同载体CO2固体吸附剂的制备及其对CO2的吸附性能研究情况,同时指出了该研究领域中仍存在的一些问题。  相似文献   

20.
Direct syntheses of hydrocarbons from CO2 hydrogenation were investigated over hybrid catalysts consisting of methanol synthesis catalyst (CuZnOZrO2) and zeolites (MFI and SAPO). The yield of hydrocarbons was strongly depending upon the amount of zeolite's acid sites as measured by NH3 TPD, while the product distributions were hardly affected by the change of acidity. The main product was ethane in the case of MFI hybrid catalyst and C3 or C4 hydrocarbon in the case of SAPO hybrid catalyst. This difference in product distribution was attributed to different mechanism of hydrocarbon formation. Investigation based on the ethene co-reaction suggested that the consecutive mechanism operated for HZSM-5 and the carbon pool mechanism for SAPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号