首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Crude oils were extracted from wet- and dry-milled corn germs with supercritical carbon dioxide (SC-CO2) at 50–90 C and 8,000–12,000 psi and were characterized for color, free fatty acids, phosphorus, refining loss, unsaponifiable matter, tocopherol and iron content. They were compared with commercial products. Extraction of wetmilled germ with SC-CO2 has some advantages over the conventional prepress solvent method commonly used in the industry. For example, SC-CO2 extraction of wet-milled germ at 50 C and 8,000 psi yields crude oil with a lower refining loss and a lighter color. After laboratory processing, a light-colored, bland salad oil is obtained. Crude, refined, bleached and deodorized oils from SC-CO2-extracted dry-milled germ appear equivalent to those obtained by expeller pressing. Presented in part at AOCS meeting, Toronto, Ontario, Canada, May 1982.  相似文献   

2.
Supercritical carbon dioxide (SC-CO2) and soxhlet extraction using was carried out to extract oil from wheat bran oil. For SC-CO2, the pressure and temperature were ranging from 10 to 30 MPa and 313.15–333.15 K. The extraction was performed in a semi batch process with a CO2 flow rate of 26.81 g/min for 2 h. Wheat bran oil was characterized to investigate the quality. Acid value (AV) and peroxide value (POV) were higher in hexane extracted oil compared to SC-CO2 extracted oil. Induction period was measured by rancimat test. The oil obtained by SC-CO2 extraction had higher capability to delay the oxidation by surrounding environment. The DPPH radical scavenging activity was also measured. The SC-CO2 extracted oil showed higher radical scavenging activity compared to hexane extracted oil.  相似文献   

3.
Extraction of flaked cottonseed with supercritical carbon dioxide at temperatures of 50–80 C and pressures of 8,000–15,000 psi yields an improved crude cottonseed oil compared to those obtained by conventional solvent or expeller processes. Improvements include lighter initial color, less refining loss and lighter refined bleached colors. Crude cottonseed oils obtained by supercritical fluid extraction require less refining lye and show less tendency to undergo color fixation while in storage. Presented at the AOCS annual meeting, Chicago, May 1983.  相似文献   

4.
An investigation of the application of supercritical carbon dioxide (SC-CO2) extraction to the deacidification of olive oils has been made to verify that the nutritional properties of the oil remain unchanged when this technique is applied. Preliminary runs at 20 and 30 MPa in the temperature range of 35–60°C were performed on fatty acids and triglycerides as pure compounds or mixtures, to determine their solubility in SC-CO2. The solubility data obtained show that CO2 extracts fatty acids more selectively than triglycerides under specific conditions of temperature and pressure (60°C and 20 MPa). It has been noted that the physical state of the solutes plays an important role in determining the solubility trends as a function of temperature and pressure. Extraction of free fatty acids from olive oil was performed on samples with different free fatty acid (FFA) contents at 20 and 30 MPa and at 40 and 60°C. Experimental data suggest that the selectivity factor for fatty acids is higher than 5 and increases significantly as the fatty acid concentration of the oil decreases. For a FFA content of 2.62%, the selectivity reaches a value of 16. In order to evaluate any variations in the composition, several SC-CO2 extractions of husk oil with high FFA content (29.3%) were made. The results show that selectivity is still significant (≈5) and the composition in the minor component of the deacidified oil has not changed. On the basis of the experimental results and preliminary process evaluations, the authors conclude that SC-CO2 extraction could be a suitable technique for the deacidification of olive oils, especially for oils with relatively high FFA (<10%).  相似文献   

5.
6.
The oils from two kinds of pumpkin seeds, black and white ones, were extracted by supercritical CO2 (SC‐CO2). The technological variables for SC‐CO2 extraction were optimized and the resulting oils were analyzed by GC‐MS. As a result, the optimal conditions for SC‐CO2 extraction were as follows: 25~30 MPa, 45 °C, SC‐CO2 flow rate of 30~40 kg/h. The main compounds in the resulting oils were 9,12‐octadecadienoic acid, 9‐octadecenoic acid, stearic acid, palmitic acid for both types of pumpkin seeds, however, the black seed oil contains more unsaturated fatty acids (UFA) than the white seed oil. On the other hand, some compounds including heptadecanoic acid (0.27%), tetracosanic acid (0.1%), 9‐dodecaenoic acid (0.45%) and pentadecenoic acid (0.05%) were found in white seed oil but not in black seed oil; while eicosanic acid (0.05%), 11,14‐eicosadienoic acid (0.2%), 11‐octadecenoic acid (0.06%), 7‐hexadecenoic acid (0.02%) and 1,12‐tridecadiene (0.02%) were only found in black seed oil.  相似文献   

7.
Extraction of fat-soluble vitamins (A, D, E, and β-carotene) by supercritical carbon dioxide (SC-CO2) was tested to replace conventional liquid extraction methods, which require large volumes of organic solvents. Supercritical fluid extraction (SFE) is a rapid extraction technique for fat-soluble vitamins enabling them to be accurately determined using only small volumes of organic solvents. Extractions were performed on ultra-high-temperature sterilized milk, milk powder, pork, liver paté (paté de fois), infant formula, and canned baby food to compare the methods. The proposed method is based on the extraction of fat-soluble vitamins and their esters by using SC-CO2 with methanol as a modifier. HPLC analysis using photometric detection was used for the vitamin analysis. The results showed no significant differences between extraction methods. The proposed SFF method appears to be useful as a substitute for the traditional organic solvent method, mainly for vitamin A and γ-tocopherol. Some data in this paper were presented at the 5th International Symposium on Supercritical Fluids, Atlanta, Georgia, April 2000.  相似文献   

8.
Acorn fruit oils from two species of oak, Quercus rotundifolia L. (holm‐oak) and Quercus suber L. (cork‐oak), were extracted by n‐hexane. The acorn fruit of Quercus rotundifolia L. was also extracted by supercritical CO2 at 18 MPa and 313 K, a superficial velocity of 2.5 × 10?4 ms?1, and a particle size diameter of 2.7 × 10?4 m. The oils were characterised in terms of fatty acids, triglycerides, sterols, tocopherols, and phospholipids. The main fatty acid in both fruit species was oleic acid (about 65%), followed by linoleic acid (about 16.5–17%) and palmitic acid (about 12.1–13.4%). The main triglyceride found in acorn oils was the OOO (oleic, oleic, oleic) triglyceride (33–38%), followed by the POO (palmitic, oleic, oleic) triglyceride (12.6–18.2%). In terms of sterols, the main component in acorn oils of both species was β‐sitosterol (83.5–89%), followed by stigmasterol (about 3%). However, in Quercus suber L., acorn oil was found to consist to 10.2% of campesterol. The amount of cholesterol was low (0.27% for the Quercus rotundifolia L. oil extracted by supercritical fluid extraction, and 0.18% for the oil extracted by n‐hexane). The Quercus suber L. acorn oil presented 0.1% of cholesterol. The total amount of tocopherols in Quercus rotundifolia L. acorn oils was almost the same when the oil was extracted by n‐hexane (973 mg/kg oil) or by supercritical CO2 (1006 mg/kg oil). The Quercus suber L. acorn oil presented a high value of total tocopherols (1486 mg/kg oil). The supercritical CO2 did not extract the phospholipids. The amount of phospholipids was very similar for both species of oak acorn oils extracted by n‐hexane. Oxidative stability was also studied, by using the peroxide value and the Rancimat method, revealing that all the oils were significantly protected against oxidation. The influence of storage, under several conditions, on the oxidative stability was also studied. The Quercus rotundifolia L. oil extracted by n‐hexane was better protected against oxidation after a few days of storage at 60 °C.  相似文献   

9.
张文华 《化工科技》2005,13(6):18-20
采用正交实验法对超临界CO2萃取丁香挥发油的条件进行了研究。考察了萃取温度、压力、CO2流量等因素在不同水平下对丁香挥发油提取率的影响。得到了超临界C02萃取丁香挥发油的最佳实验条件:萃取压力30MPa、温度40℃、CO2流量40kg/h和萃取时间80min,得率为20.62%。与水蒸气蒸馏法比较,超临界CO2萃取的收率高,萃取时间短。  相似文献   

10.
Interfacial properties essentially influence fluid‐liquid separation processes. Thereby, interfacial tension is an important parameter that is associated with mass transfer and mutual solubility of participating compounds. For this reason, interfacial tension of a virgin olive oil with a known amount of free fatty acids was measured in supercritical carbon dioxide atmosphere at 313 K and 353 K and pressures up to 40 MPa. The obtained values were compared to different oils some of which contain appreciable amounts of volatile components. In general, interfacial tension behaviour is dominated by the effect of pressure, whereas differences between oil compositions are secondary. Besides mutual solubility interfacial tension is supposed to be associated with the compressibility of the dense fluid phase. For predicting mass transfer area some general comments on the colloidal behaviour of systems containing supercritical CO2 are made  相似文献   

11.
Methanolysis of seed oils in flowing supercritical carbon dioxide   总被引:4,自引:0,他引:4  
The direct methanolysis of triglycerides in flowing supercritical carbon dioxide by an immobilized lipase is described. The reaction system consists of two syringe pumps for substrate addition and another two syringe pumps for delivering CO2 at 24.1 MPa. Corn oil is pumped into the carbon dioxide stream at a rate of 4 μL/min, and methanol is pumped at 5 μL/min to yield fatty acid methyl esters (FAME) at >98% conversion. Direct methanolysis of soy flakes gives FAME at similar yields. This combined extraction/reaction is performed at 17.2 MPa and 50°C. The fatty acid profiles obtained for these seed oils matches those obtained by classical chemical synthesis.  相似文献   

12.
Propolis is a natural product used for centuries by human kind, due to several evidenced biological activities: antioxidant, antimicrobial, anti-inflammatory, antitumor and anti-HIV. Extracts from propolis, used in food, pharmaceutical and cosmetic industries, present quality and composition related to the extraction method applied. Natural compounds with biological activity can be obtained by conventional techniques, such as Soxhlet and Maceration, or by alternative methods such as supercritical fluid extraction (SFE). Thus, the aim of this work was to compare propolis extraction yields obtained by different procedures, for instance, SFE in one stage, with CO2 and CO2 plus co-solvent, and SFE in two stages, as well as Soxhlet and Maceration as low pressure extraction methods using ethanol, ethyl acetate, chloroform, n-hexane, water and mixtures of water/ethanol. The operational conditions for SFE in one stage with pure CO2 were: 30, 40 and 50 °C and from 100 to 250 bar. The SFE with co-solvent was performed at 150 bar and 40 °C and ethanol concentrations of 2, 5 and 7% (w/w). The highest yield was obtained by chloroform Soxhlet extraction (73 ± 2%, w/w) whereas for SFE the maximum yield was 24.8 ± 0.9%, using 5% ethanol as co-solvent. For SFE in two stages, 100 and 150 bar were used in the first stage while 250 and 300 bar were applied in the second stage, at 40 °C. The yields were 8.4 ± 0.7 (150 bar) and 5.1 ± 0.7 (250 bar), for stages 1 and 2, respectively. The chemical composition of the propolis material was determined by HPLC analysis. The experimental data were correlated using four models based on differential mass balance equations: (1) the Sovová’s model; (2) the logistic model (3) the diffusion model and (4) the simple single plate model (SSP). The logistic model provided the best adjustment for propolis SFE curves.  相似文献   

13.
Glycerolysis of soybean oil was conducted in a supercritical carbon dioxide (SC-CO2) atmosphere to produce monoglycerides (MG) in a stirred autoclave at 150–250°C, over a pressure range of 20.7–62.1 MPa, at glycerol/oil molar ratios between 15–25, and water concentrations of 0–8% (wt% of glycerol). MG, di-, triglyceride, and free fatty acid (FFA) composition of the reaction mixture as a function of time was analyzed by supercritical fluid chromatography. Glycerolysis did not occur at 150°C but proceeded to a limited extent at 200°C within 4 h reaction time; however, it did proceed rapidly at 250°C. At 250°C, MG formation decreased significantly (P<0.05) with pressure and increased with glycerol/oil ratio and water concentration. A maximum MG content of 49.2% was achieved at 250°C, 20.7 MPa, a glycerol/oil ratio of 25 and 4% water after 4 h. These conditions also resulted in the formation of 14% FFA. Conversions of other oils (peanut, corn, canola, and cottonseed) were also attempted. Soybean and cottonseed oil yielded the highest and lowest conversion to MG, respectively. Conducting this industrially important reaction in SC-CO2 atmosphere offered numerous advantages, compared to conventional alkalicatalyzed glycerolysis, including elimination of the alkali catalyst, production of a lighter color and less odor, and ease of separation of the CO2 from the reaction products.  相似文献   

14.
Characterization and supercritical carbon dioxide extraction of walnut oil   总被引:9,自引:0,他引:9  
Walnut (Juglans regia L.) oil was extracted with compressed carbon dioxide (CO2) in the temperature range of 308 to 321 K and in the pressure range of 18 to 23.4 MPa. The influence of particle size was also studied at a superficial velocity of 0.068 cm/s, within a tubular extractor of 0.2 L capacity (cross-sectional area of 16.4 cm2). FFA, sterol, TAG, and tocopherol compositions were not different from those of oil obtained with n-hexane. The main FA was linoleic acid (56.5%), followed by oleic acid (21.2%) and linolenic acid (13.2%). The main TAG was LLL (linoleic, linoleic, linoleic) (24.4%), followed by OLL (oleic, linoleic, linoleic) (19.6%) and LLLn (linoleic, linoleic, linolenic) (18.4%). The main component of sterols was β-sitosterol (85.16%), followed by campesterol (5.06%). The amount of cholesterol was low (0.31 and 0.16% for oils extracted by n-hexane and supercritical fluid extraction, respectively. The CO2-extracted oil presented a larger amount of tocopherols (405.7 μg/g oil) when compared with 303.2 μg/g oil obtained with n-hexane. Oxidative stability determined by PV and the Rancimat method revealed that walnut oil was readily oxidized. Oil extracted by supercritical CO2 was clearer than that extracted by n-hexane, showing some refining. A central composite, nonfactorial design was used to optimize the extraction conditions using the software Statistica, Version 5. The best results were found at 22 MPa, 308 K, and particle diameter (Dp) −0.1 mm.  相似文献   

15.
超临界CO2萃取的研究与应用   总被引:4,自引:0,他引:4  
沈国良 《化工时刊》2001,15(12):10-13
介绍了超临界流体的特性及其萃取的基本原则,讨论了超临界流体萃取技术的优点,评述了超临界CO2的特点,概述了国内外超临界CO2萃取技术在医药,食品,香料,石油化工以及环境保护等领域的开发及应用。  相似文献   

16.
超临界CO_2萃取浓缩大豆粗磷脂的研究   总被引:6,自引:0,他引:6  
以浓缩大豆粗磷脂作为液态物料的模型材料进行了超临界CO2萃取研究。通过实验考察了萃取温度、压力、时间和溶剂流量等对萃取效果的影响,确定了对于该种物质萃取的最佳操作条件。通过与传统的水蒸汽蒸馏法和有机溶剂萃取法生产的产品进行对比(酸碱度、含水量、有机溶剂残余量、色泽、气味等方面),表明了超临界流体萃取技术用于热不稳定物质的萃取所具有的独特优势。  相似文献   

17.
超临界CO2萃取大豆卵磷脂工艺条件的研究   总被引:7,自引:0,他引:7  
本文通过对萃取压力、萃取温度、萃取时间等条件的实验,获得了最佳的工艺参数。实验结果表明,超临界萃取法具有工艺简单、操作安全、产品质量好、萃取效率高等优点。  相似文献   

18.
Semi‐refined rapeseed and sunflower oils after degumming and bleaching were refined by deodorization and deacidification in two ways, i.e., by steam vacuum distillation in the deodorization column Lurgi and by molecular distillation in the wiped‐film evaporator. The oxidative stability of the oils before and after the physical refining has been evaluated using non‐isothermal differential scanning calorimetry. Treatment of the experimental data was carried out by applying a new method based on a non‐Arrhenian temperature function. The results reveal that refining by molecular distillation leads to lower oxidative stability of the oils than refining by steam vacuum distillation. Practical applications : (i) A method for the refining of edible oils by the molecular distillation in the wiped film of a short‐path evaporator is presented and applied. (ii) Oxidative stability of the oils refined by molecular distillation and steam vacuum distillation is compared. It has been found that refining by molecular distillation leads to lower oxidative stability of the oils than refining by steam vacuum distillation. (iii) Experimental data were treated by applying a new method based on a non‐Arrhenian temperature function. The method enables trustworthy predictions of oil stabilities for the application temperatures.  相似文献   

19.
Supercritical carbon dioxide (SC-CO2) was used to partially defat walnuts, and the oxidative stability of the extracted walnut oils was assessed. The SC-CO2-extracted oils were less stable during accelerated storage in the dark than was pressed walnut oil, as determined by PV, headspace analysis by solid-phase microextraction, and sensory methods. The SC-CO2-extracted oils, however, exhibited greater photo-oxidative stability than did pressed walnut oil by all of these methods, possibly because of the presence of chlorophyll in the pressed oil. Oxidative stability indices and tocopherol contents were significantly lower in the SC-CO2-extracted oils than in pressed oil.  相似文献   

20.
The supercritical carbon dioxide extraction was applied to obtain essential oil from Pogostemon cablin in this work. Effect of extraction parameters including temperature, pressure, extraction time and particle size on extraction yield was investigated, and the response surface methodology with a Box-Behnken Design was used to achieve the optimized extraction conditions. The maximum yield of essential oil was 2.4356% under the conditions of extraction temperature 47℃, pressure 24.5 MPa and extraction time 119 min. Moreover, based on the Brunauer-Emmett-Teller theory of adsorption, a mathematical modeling was performed to correlate the measured data. The model shows a function relationship between extraction yield and time by a simple equation with three significantly adjustable parameters. These model parameters have been optimized through simulated annealing algorithm. The predicted data from the mathematical model show a good agreement with the experimental data of the different extraction parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号