首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study is to evaluate the effects of solar-assisted spouted bed and open sun drying on the drying rate and quality parameters of pea. Color, shrinkage, bulk and apparent densities, internal and bulk porosities, rehydration capacity and microstructure were the quality parameters investigated in dried product.Drying rate for solar-assisted spouted bed was about 3.5 times of drying rate for open sun drying. Air temperature changed between 20 °C and 27.4 °C during open sun drying while temperature of air at the inlet of solar-assisted spouted bed dryer varied between 35.3 °C and 65.5 °C during the experiments. Effective diffusivities were found to be 0.64 × 10?10 and 3.27 × 10?10 m2/s for open sun and solar-assisted spouted bed drying of pea, respectively. In color analysis, it was observed that a* value increased while b* value decreased for both drying methods. Bulk density and apparent density of peas dried under open sun was higher than that in solar-assisted spouted bed drier. In both drying methods, internal and bulk porosities decreased. Shrinkage was more for open sun dried samples. Rehydration capacity for solar-assisted spouted bed dried sample was higher than the one for open sun dried.  相似文献   

2.
Aloe vera (Aloe barbadensis Miller) gel was dried at five inlet temperatures 50, 60, 70, 80 and 90 °C, in a convective dryer with a constant air flow of 2.0 ± 0.2 m/s. Rehydration ratio, water holding capacity, texture, microstructure and total polysaccharide content were evaluated. Drying kinetics was estimated using the Weibull distribution (r2 > 0.97 and Chi-square < 0.0009). Values of scale and shape parameters ranged from 90.94 to 341.06 (min) and 1.43 to 1.49, respectively. Furthermore, the influence of temperature on the model parameters as well as on the quality attributes was analysed using a least significant difference test (p-value < 0.05). These effects were more evident for the long drying period (e.g. 810 min at 50 °C). However, minor alterations in the structural properties and total polysaccharide content were produced at drying temperatures of 60–70 °C, resulting in a high quality gel.  相似文献   

3.
The drying operation is one of the critical steps in the preparation of instant rice. Drying methods and conditions play important roles in achieving the desired quality. In this study, instant rice was subjected to convective hot air, microwave and combined microwave-hot air dehydration. Three air temperature (70 °C, 80 °C, 90 °C) and three microwave power (210 W, 300 W, 560 W) settings were investigated to find the drying kinetics, rehydration kinetics and colour change. The results showed that combined microwave-hot air drying decreased the drying time required when compared to drying with either hot air or microwave energy alone. Predictive models were developed to describe dehydration and rehydration kinetics. Dehydration rate, rehydration rate and total colour change of rehydrated product generally increased with microwave level and air temperature. Combination drying with MW = 300 W and T = 80 °C was optimal in terms of drying time, rehydration time and colour.  相似文献   

4.
An integrated methodology for the scale-up of vacuum contact drying with intermittent agitation is described in this work. The methodology combines a mathematical model of vacuum contact drying, based on differential transient heat and energy balances, and a small-scale experimental apparatus for model validation and parameter estimation. The validated model was used for the estimation of drying times of six different pharmaceutical compounds at the pilot and manufacturing scale over a range of drying conditions – pressure 15–200 mbar, temperature 45–70 °C, solvents: acetone, water, methanol, n-propanol, and isopropyl acetate. The mean difference between predicted and actual drying times for the six compounds was less than 9%, which is considered a significant improvement over current semi-empirical approaches to vacuum contact drying scale-up.  相似文献   

5.
The objective of this study was to develop a drying equation for predicting the thin layer drying kinetics of dried Thai Hom Mali paddy using different drying gases. Thai Hom Mali paddy cv. Khao Dok Mali 105 with initial moisture content of 32% dry basis was dried in a heat pump dryer at 0.4 m/s fixed superficial velocity, 60% fixed evaporator bypass air ratio, and varied drying temperatures of 40, 50, 60 and 70 °C using hot air, CO2 and N2 gases as drying media. Drying rate was not affected by drying gases but increased with drying temperatures. Moisture ratios, at any given time during the drying process, were compared among various models, namely, Newton, Page, Modified Page I, Henderson and Pabis, two-term, approximation of diffusion, and Midilli. The effect of drying air temperatures on the coefficients of the best moisture ratio model was determined by single step regression method. The R2 coefficient, root mean square error (RMSE) and chi-square (χ2) were criteria for selecting the best model. The study found that the Midilli model was the best model for describing the drying behavior of Thai Hom Mali paddy in every evaluated drying gas. It should be possible to predict the moisture content of a product with a generalized model that shows the effect of drying air temperature on the model constants and coefficients.  相似文献   

6.
Pineapple (Anana comosus) slices were dried by hot-air convective drying technique at fixed temperature (45, 60 and 75 °C) and constant air velocity of 1.5 m/s. The effect of drying conditions (drying time and air temperature) on the pineapple quality was evaluated. The quality of dehydrated pineapple was analyzed by color and texture changes, l-ascorbic acid loss and the ability of water uptake during rehydration procedure. Water uptake during rehydration was described by Page model. Statistical analysis of data revealed not significant difference (p > 0.05) among color and mechanical characteristics of pineapple samples dried at different drying temperatures to preset moisture content. Pineapple samples dried at 45 °C had better rehydration ability and more l-ascorbic acid retention than those obtained by air drying 75 °C. Hence, 45 °C drying temperature was best condition for pineapple quality preservation.  相似文献   

7.
The use of starchy flours in food systems greatly depends on the related functional properties of starch. The effect of drying temperatures on starch-related functional properties of flours obtained from fruits of the two most common Portuguese Castanea sativa varieties (Martainha and Longal) was evaluated. Flours were analysed for amylose and resistant starch contents, swelling ability, pasting properties and thermal characteristics. Drying temperature is positively correlated with amylose content, resistant starch and viscoamylographic properties, mainly the temperatures higher than 40 °C. Amylograms of fruits dried at 60 °C displayed higher peak viscosity (1370 B.U. and 2260 B.U. respectively for Longal and Martainha) when compared to the other temperatures tested (40 °C, 50 °C and 70 °C). Decreases in transition temperatures and in enthalpy evaluated by thermal analysis were observed with increasing drying temperatures, suggesting modifications in starch structure during the drying process. The effects of drying temperatures were more evident in Longal variety. The flours from the two chestnut varieties and from fruits dried at low temperatures and fruits dried at high temperature showed significant differences between the evaluated properties.  相似文献   

8.
Drying processes generally cause volume and surface change of foodstuffs. Information on the porous structure and the mechanical properties of dried food products is needed for determining food quality, process design and estimating properties such as density and moisture diffusivity.In this work we investigated the structural changes induced in eggplant by convective air drying at four different temperatures (40, 50, 60 and 70 °C) and their effect on the subsequent rehydration process. Drying and rehydration kinetic curves were also measured.The changes in physical properties, such as porosity, pore-size distribution and bulk density were determined by Hg porosimetry, scanning electron microscopy and optical microscopy while their effect on the textural characteristics by dynamometric measurements.As expected, the increase of the drying air temperature causes shorter drying times. The drying temperature influences strongly the microstructure of dried samples: the porosity increases with the air temperature, but the structure is better preserved at intermediate temperature (60 °C) as confirmed by the lower firmness values with respect to the other dehydrated samples (40, 50 and 70 °C). In these latter, the longer drying time and the higher temperature, respectively, causes the development of a wrinkled structure. In particular, at 70 °C the structure of dehydrated samples appears totally broken with a consequent faster water uptake during rehydration.  相似文献   

9.
Pine (Pinus silvestris) wood with shaped sample dimensions of 20 mm × 20 mm × 5 mm (axial) was selected as the raw material. Samples were dried and, for a half of the samples, resin extraction from the sample was applied. SiO2 sol was prepared, and samples were impregnated under different vacuum/pressure conditions. Relative impregnation efficiency was calculated for impregnated samples and varied from 95 up to 105% of the theoretical value for different samples and impregnation conditions. Impregnation and drying procedures were repeated up to three times to increase the SiO2 amount introduced in the sample. Impregnated samples were pyrolyzed at 500 °C under oxygen free atmosphere with the subsequent high temperature treatment at 1600 °C in an Ar atmosphere. Biomorphic SiC ceramics and its precursors were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). An experimental result shows that the optimized vacuum/pressure impregnation technique is highly effective for the introduction of SiO2 in the wood.  相似文献   

10.
The literature surveyed revealed that the drying kinetics of Gundelia tournefortii has not been investigated. In this study, mathematical modeling of the thin layer drying kinetics of G. tournefortii is investigated for both the microwave and open sun drying conditions. Five different microwave power levels ranging from 90 to 800 W were used for the microwave drying. Solar radiation for the open sun drying varied from 350 to 1100 W/m2. Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in drying time. The experimental moisture loss data were fitted to the 14 thin layer drying models. Among the models proposed, the Midilli model precisely represented the microwave drying behavior of G. tournefortii with the coefficient of determination higher than 0.996 and mean square of deviation (χ2), root mean square error (RMSE) and mean bias error (MBE) lower than 1.82 × 10?4, 12 × 10?3 and 1.4 × 10?4, respectively for all the microwave drying conditions studied. Values of drying constant (k) were in the range of 0.0098–0.2943 min?1 and the effective moisture diffusivities (Deff) of G. tournefortii ranged from 5.5 × 10?8 to 3.5 × 10?7 m2/s. The values of k and Deff increased with the increase of microwave power level. The logarithmic model was found to best describe the open sun drying kinetics of G. tournefortii. The effective diffusivity of G. tournefortii under the sun drying condition was determined as 2.48 × 10?10 m2/s.  相似文献   

11.
Fresh ginger slices were dehydrated by air drying (AD), microwave drying (MD), vacuum drying (VD), and freezing drying (FD). Volatiles were extracted from fresh ginger pulp and dried ground ginger powder with solid-phase microextraction (SPME), and identified by gas chromatography–mass spectrometry (GC–MS). Results indicated that, 19, 28, 21, 20, 31 and 20 novel compounds (70 in total) appeared in dried gingers treated by AD at 50, 60 and 70 °C, MD at 60 W, VD in 13.3 kPa at 60 °C and FD in 0.203 kPa at chamber temperature of 22 °C, respectively. Principal component analysis for the main volatiles indicated that drying increased the relative contents of benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-, 1,3-cyclohexadiene,5-(1,5-dimethyl-4-hexenyl)-2-methyl-,[S-(R*,S*)]-, α-farnesene and cyclohexene,3-(1,5-dimethyl-4-hexenyl) -6-methylene-,[S-(R*,S*)]- while decreased those of 2,6-octadienal,3,7-dimethyl-,(Z) and 2,6-octadienal,3,7-dimethyl-. Cluster analysis disclosed that MD was the most favorite drying way, followed by AD at 60 °C, VD, FD, and AD at 50 and 70 °C.  相似文献   

12.
Sumac (Rhus coriaria L.) is a spice which is obtained by grinding of whole sumac berries. The aim of this study is to survey the feasibility of a spray dried sumac extract process along with the effects of adding maltodextrin (MD) and the effects of the inlet and outlet temperatures of the drying air on the properties of the powdered product obtained from the spray drying of the sumac extract. A pilot scale spray dryer was used for the production of the sumac extract powder. The inlet/outlet air temperatures were adjusted to 160/80, 180/90, and 200/100 °C where outlet air temperature was controlled by regulating the feed flow rate. The total soluble solid content of the sumac extract was measured as 3.5% and adjusted to 10, 15, 20, and 25% (w/w) with the addition of maltodextrin with a Dextrose Equivalence (DE) of 10–12. The obtained powders were analyzed for moisture content, water activity, ash content, pH, colour, total phenolic content, antioxidant activity, bulk density, wettability, solubility, and microstructure.Depending on the analysis of the results, the temperature, maltodextrin, and the interaction between temperature and maltodextrin have an important effect on the performed analysis (P < 0.05) except for the pH value analysis (P > 0.05).  相似文献   

13.
An in-house custom made high pressure adsorption/desorption unit has been designed and fabricated to study reversible hydrogen (H2) intake capacity, hysteresis, kinetics, plateau pressure of various nanomaterials, zeolites and metallic compounds, in the pressure range of 1  P  150 atm. The unit has been used to estimate H2 intake capacity of carbon nanofibers prepared by flame synthesis in the absence of catalyst. H2 adsorption studies have been carried out in the pressure range of 25–100 atm at 297 K. The maximum H2 intake capacity has been observed to be 3.7 wt% at 100 atm.  相似文献   

14.
Power ultrasound application could constitute a way to enhance food drying in order to improve not only mass transfer but also product quality, since it does not significantly heat the material. The main aim of this work was to assess the influence of power ultrasound on the mass transfer process during drying of different products, carrot, persimmon and lemon peel.Convective drying kinetics were carried out with ultrasound (US experiments 21.8 kHz, 75 W), or without ultrasound application (AIR experiments) at air velocities ranging between 0.5–12 m s−1. Different geometries were used for each of the products: cubes in carrots (2 L = 8.5 mm), cylinders in persimmon (2 L = 30 mm and 2 R = 13 mm) and slabs in lemon peel (L = 10 mm). Drying kinetics were modelled by considering different diffusion models according to the geometry.The results show that air velocity and raw material characteristics play a role in convective drying kinetics assisted by power ultrasound. Power ultrasound increased effective moisture diffusivity at low air velocities for all the products. However, in the case of lemon peel, ultrasound also improved the drying rate at high air velocities. This behaviour may be explained by the disruption of the acoustic field at high air flow rates and the different level of intensity required due to the structure of the products. Therefore, the raw material constitutes an important variable to establish the influence of power ultrasound on convective drying.  相似文献   

15.
The physical and antibiotic properties of kanamycin powders obtained by spray freeze drying (SFD) were compared with those of raw kanamycin. The SFD procedures were optimized to prepare kanamycin for use as an inhaled drug. Scanning electron microscopy (SEM) and a laser particle size analyzer were applied to estimate physical structure and properties of the particle. In addition, the disk diffusion method was used to compare the antibiotic activity of raw kanamycin and that produced by SFD. According to SEM, the kanamycin particles had various sizes and shapes with porous structures at different SFD conditions. The diameters of the kanamycin powders were between 13.5 μm and 21.8 μm, and their aerodynamic particle sizes were between 3.58 μm and 6.39 μm. The antibiotic activities of the raw and spray freeze-dried kanamycin samples were not significantly different (P > 0.05). The optimized conditions for annealing temperature, annealing time, kanamycin concentration, pressure, and nozzle tip lift were ? 15 °C, 5 h, 10% kanamycin, 100 kPa, and, 1 mm, respectively.  相似文献   

16.
There is still lack of the insight into the storage stability of dry probiotics produced by vacuum drying. Therefore, in this study we assessed the stability of a vacuum-dried Lactobacillus paracasei F19 under varying storage conditions. L. paracasei F19 was vacuum-dried with and without sorbitol and trehalose. The dried cells were stored at 4, 20 and 37 °C, and at aw = 0.07, 0.22 and 0.33. The survival was determined by viable counts on MRS agar plates. The inactivation rate constants were determined for each storage condition. The survival after drying of cells dried without and with trehalose and sorbitol was 29, 70 and 54%, respectively. All vacuum-dried cells were very stable at 4 °C. However, high stability at non-refrigerated temperatures was obtained only in the presence of sorbitol. In contrast to sorbitol, the supplementation of trehalose did not stabilize cells during storage. This is supposedly due to the rapid crystallization of trehalose during storage. While glass transition temperatures of dry cell-sorbitol increased from ?32 °C to 12 °C during storage at 37 °C and aw = 0.07, Tg of dry cell-trehalose (?15 °C after drying) could not be determined after storage for only 24 h. In conclusion, we showed that high stability of probiotic cells at non-refrigerated temperatures could be obtained by vacuum drying process with appropriate protectant.  相似文献   

17.
Dahi is one of the most popular fermented milk products consumed in India with excellent therapeutic properties. The initial moisture content of dahi is approximately 5.7 kg water kg dry solid−1. The shelf life of dahi is limited and hence the long term storage is possible in the form of dahi powder which can further be used as a base for formulation of health drink mix. Dahi was dried in a laboratory scale recirculatory convective air dryer to a final moisture content of 0.04 kg water kg dry solid−1. Drying characteristics of dahi were investigated under varying conditions of dahi thickness (0.003 m, 0.004 m and 0.005 m) and drying air temperatures (45°C, 50°C and 55°C) and velocities (1.5 m s−1, 2.0 m s−1 and 2.5 m s−1). Different drying models were used to simulate the observed drying data. The mathematical models were compared based on R-square and reduced chi-square values. The drying characteristics were satisfactorily described by Page, modified page, logarithmic and Midilli et al. models. The Midilli et al. model followed by modified page model provided the best representation of data. Effective moisture diffusivity computed on the basis of Fick's law varied between 2.52 × 10−10 m2 s−1 and 1.3 × 10−9 m2 s−1 under experimental drying air temperatures and sample thicknesses at air velocity 2.5 m s−1. The temperature and thickness dependence of effective moisture diffusivity was expressed by an Arrhenius type of equation. The equation showed best fit for diffusivity data at 2.5 m s−1 and varying temperatures and sample thickness.  相似文献   

18.
Aloe vera leaves were dried at different temperatures in hot air oven and powdered. The percent powder yield was found 2.60%, 2.60%, 2.55% and 2.52% at 50, 60, 70 and 80 °C respectively. Powder samples had the pH (1% solution) 3.51, 3.53, 3.52 and 3.53 with the rise of drying temperature in the selected range. Statistically, yield and pH indicated no significant difference (p < 0.5) due to drying temperature variation. Wettability of powder at 70 °C was 32 s as compared to 35, 35 and 37 s in the samples obtained at 50, 60 and 80 °C respectively. Water absorption capacity of powder at 70 °C was 359% as compare to 351%, 354% and 356% of 50, 60, and 80 °C powder samples. The HPLC chromatogram obtained for the sample dried at 80 °C shows that as the temperature increased from 50 to 80 °C, aloin content decreased from 10.6 to 1.7 ppm. The “a” values were found 2.028, 2.226, ?0.282 and 2.531 for the samples obtained after drying at 50, 60, 70 and 80 °C respectively. Samples obtained at 70 °C showed negative “a” value indicated that the sample was more greenish in colour as compared to other samples.  相似文献   

19.
Inactivation curves of Salmonella typhimurium under high-hydrostatic pressures (HHPs) (200, 250, 300 and 350 MPa) at different temperatures (15, 25, 35 and 45 °C) in tryptone soy broth were analyzed using the modified Gompertz model. The phase of disappearance (time for inactivation of all cells, λ) and the inactivation rate (μ) of S. typhimurium were inversely related. Inactivation rates of S. typhimurium were higher (P < 0.05) at 45 °C than 15, 25 and 35 °C under HHPs from 200 to 350 MPa. The μ values were ?2.66, ?6.06, ?7.67 and ?7.99 min?1 at 200, 250, 300 and 350 MPa HHP treatments, respectively, at 45 °C. A negative μ value (always negative) indicates that an increase (become more negative) in μ with increasing pressure or temperature is related to the S. typhimurium inactivation process. The μ values were also increased with increasing temperature from 15 to 45 °C at same treated pressures. Increased pressure and temperature had significant effects on the survival of S. typhimurium. The temperature dependence of the inactivation rate constant was analyzed based on the Arrhenius, linear and square-root models. The pressure sensitivity (low Eμ) determined based on the Arrhenius model was lower at high pressure. Eμ (activation energy) value was 1.94 kJ/mol at 350 Mpa, and 42.88, 12.99 and 3.73 kJ/mol at 200, 250 and 300 MPa, respectively. Results of this study enable the prediction of microbial inactivation exposed to HHPs at different temperatures.  相似文献   

20.
In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range ?10 to 25 °C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli's model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. The determined Walli's values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号