首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is expected that the future construction of the Paraná Medio Hydroelectric Project on the middle Paraná River in Argentina will lead to the accumulation of floating hydrophytes, mainly water hyacinth. Several problems are related to aquatic plants, and steps for efficient control of the vegetation should be taken. If mechanical control is used, the biomass must be processed, preferably in a useful way. Water hyacinth growth in the middle Paraná River has been measured and its bioconversion to methane by anaerobic fermentation determined. It is estimated that gross methane production may be between 1.0 and 4.1 × 10 m3/yr. The fermentation residue production, with a potential value as soil condition, may represent between 54.9 and 221.4 × 103 t nitrogen/year, i.e., between 2 and 8 times the present nitrogen fertilizer demand in Argentina.  相似文献   

2.
The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001–2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world.  相似文献   

3.
Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability.The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy.  相似文献   

4.
《Biomass & bioenergy》2006,30(5):385-392
The European Union has set up indicative targets for its 15 Member States to supply 22.1% of their total electricity consumption using renewable energy resources by 2010. This paper compares two ways to achieve target compliance—either with import of biomass from countries outside the EU or without. The ADMIRE REBUS model combines cost data for electricity producing renewable energy technologies with data on the renewable energy resources available in EU and assesses the effect of the various national support policies for green electricity in the EU countries. The major finding of the study is that increased imports of low-cost biomass will significantly reduce the cost of target compliance, but would hamper the use of energy crops and further development of wind power within the EU. Despite this, increased importation of biomass can be the cost-reducing factor making the target realisable, which would justify promotion of such trade.  相似文献   

5.
《Biomass & bioenergy》1999,16(3):207-221
In this paper we have assessed the availability of land and the potential for biomass production in India to meet various demands for biomass, including modern bioenergy. This is estimated by considering the various demands on land and its suitability. The biomass production potential of energy plantations is assessed for different agro-ecological zones. The total woody biomass production is estimated to be 321 Mt, based on biomass productivity in the range 2 to 17 t/ha/yr for the different agro-ecological zones and considering the conservative estimate of 43 Mha land availability for biomass production. A surplus of 231 Mt of biomass (after meeting the increased demand for fuelwood and timber by the year 2010) is estimated to be available for energy, which has an electricity generation potential of 231 TWh. As a first step, only the feasible physical potential of biomass production is assessed, along with an analysis of barriers. The potential costs and benefits of biomass production strategy are not analysed.  相似文献   

6.
中国林业生物质能源资源开发利用现状与发展建议   总被引:1,自引:0,他引:1  
开发利用林业生物质能源资源是解决我国生物质能源发展原料瓶颈问题的重要途径之一.文章在全面分析了我国林业生物质能源资源现状的基础上,对其开发利用的可行性及障碍进行了探讨.认为我国开发利用林业生物质资源具备土地资源丰富、林业能源植物培育技术发展成熟、转化利用工艺与设备研发取得一定突破以及政策环境良好等条件.现阶段我国林业生物质资源开发利用面I临的障碍有:收集、运输较困难,能源林经营粗放,林业能源资源开发融资渠道单一,产业扶持政策有待完善等.针对以上问题,提出了进一步开发利用林业生物能源资源的相关建议:重视林业能源资源的规模化培育、加强科技支撑和培育管理,加大财税与金融扶持以及政策配套的机制建设,鼓励企业积极参与并通过利用CDM机制吸引国际资金和先进技术等.  相似文献   

7.
《Biomass & bioenergy》2006,30(4):321-325
ROI BioOil plants can be made modular and transportable, allowing them to be located close to the source of biomass and the subsequent transportation of high energy density BioOil to a central plant. Conversely, one central BioOil plant could supply several energy users in distributed locations, or several plants could supply numerous end-users, just as in the petroleum industry.Renewable Oil International® LLC (ROI) is one of several developers of fast pyrolysis technology. The production of BioOil can convert raw biomass into a low-viscosity liquid that, depending on the moisture content of the feedstock, increases the energy density of biomass by a factor of 6 to 7 times over green wood chips. The increase in energy density increases the amount of energy that can be hauled by standard tanker trucks versus a chip trailer van by a factor of two. Capital costs, exclusive of land costs, are comparable for a 50 MWe biomass handling system at the power plant. Land area requirements for fuel storage and handling are reduced roughly half for BioOil systems versus solid fuel handling systems. No analysis was made of operating and maintenance costs.  相似文献   

8.
What are the feasibility, costs, and environmental implications of large-scale bioenegry? We investigate this question by developing a detailed representation of bioenergy in a global economy-wide model. We develop a scenario with a global carbon dioxide price, applied to all anthropogenic emissions except those from land use change, that rises from $25 per metric ton in 2015 to $99 in 2050. This creates market conditions favorable to biomass energy, resulting in global non-traditional bioenergy production of ~ 150 exajoules (EJ) in 2050. By comparison, in 2010, global energy production was primarily from coal (138 EJ), oil (171 EJ), and gas (106 EJ). With this policy, 2050 emissions are 42% less in our Base Policy case than our Reference case, although extending the scope of the carbon price to include emissions from land use change would reduce 2050 emissions by 52% relative to the same baseline. Our results from various policy scenarios show that lignocellulosic (LC) ethanol may become the major form of bioenergy, if its production costs fall by amounts predicted in a recent survey and ethanol blending constraints disappear by 2030; however, if its costs remain higher than expected or the ethanol blend wall continues to bind, bioelectricity and bioheat may prevail. Higher LC ethanol costs may also result in the expanded production of first-generation biofuels (ethanol from sugarcane and corn) so that they remain in the fuel mix through 2050. Deforestation occurs if emissions from land use change are not priced, although the availability of biomass residues and improvements in crop yields and conversion efficiencies mitigate pressure on land markets. As regions are linked via international agricultural markets, irrespective of the location of bioenergy production, natural forest decreases are largest in regions with the lowest barriers to deforestation. In 2050, the combination of carbon price and bioenergy production increases food prices by 3.2%–5.2%, with bioenergy accounting for 1.3%–3.5%.  相似文献   

9.
Pakistan energy situation is seriously troubling today due to lack of careful planning and implementation of its energy policies. To avoid the worse situation in the years ahead, the country will have to exploit its huge natural renewable resource. In this paper a review is being presented about renewable energy resource potential available in the country to be exploited for useful and consistent energy supplies. On average solar global insolation 5–7 kWh/m2/day, wind speed 5–7.5 m/s, Biogas 14 million m3/day, microhydel more than 600 MW (for small units) with persistency factor of more than 80% over a year exist in the country. Solar and wind maps are presented along with identification of hot spring sites as resource of geothermal energy. The research results presented in this paper are not only useful for government policy makers, executing agencies but also for private sector national and international agencies and stake holders who want to invest in Pakistan for renewable energy projects or business.  相似文献   

10.
Assessment of sustainable biomass resource for energy use in China   总被引:2,自引:0,他引:2  
This paper assesses the sustainable biomass resource for energy in China. Assessment has been carried out for the following resources: (i) agricultural residues, (ii) forest residues, and (iii) municipal solid waste (MSW). The potential of each resource is estimated for the base years 2008, 2008, and 2007. The energy potentials of these resources in 2008, 2008, and 2007 are estimated to be 14.7, 3.9, and 0.2 EJ, respectively. The total potential including the energy of 6.4 EJ from the proposed low-input high-diversity (LIHD) grassland biomass on the untilled lands for the base years 1996 is equal to about 30.2% of China’s energy consumption in 2008. Furthermore it is projected that sustainable biomass use for energy will reduce net emissions of green house gases (GHG) of 3276.7 million tonnes, and help in emission-reduction target of China and the world.  相似文献   

11.
12.
Emergy account for biomass resource exploitation by agriculture in China   总被引:3,自引:0,他引:3  
On the basis of Odum's ecological economic measure of emergy as embodied solar energy, a system account of biomass resource exploitation by agriculture in China 2004 is developed in this paper, which supplements a former study on corresponding long-term historical trends during 1978 to 2000 (Chen et al., 2006. Emergy-based analysis of the Chinese agriculture. Agriculture, Ecosystems and Environment 115, 161–173). The aggregate fluxes and indicators for biomass resource exploitation in China 2004 are calculated and illustrated when compared with those for 2000 to elucidate the latest status of the Chinese agriculture as the exploitation sector for biomass resource. Data sources and algorithm are presented in detail as basic references for related analysis involving the ecological economy of biomass exploitation in agriculture.  相似文献   

13.
地理信息系统在秸秆资源化利用中的应用   总被引:2,自引:0,他引:2  
从地理信息系统(GIS)技术在秸秆资源化利用中的应用出发,分析了统计学模型与遥感模型在秸秆资源量预测中的优缺点,介绍了GIS技术在数据管理、资源量空间表达、区域收集分析、厂点优化选择方面的具体应用.提出建立秸秆利用评估系统,以期对秸秆资源综合利用提供科学解决途径和有效手段.  相似文献   

14.
Corn stover has potential as a bioenergy feedstock in North America. We simulated production costs for stover harvest (three-pass and two-pass with baling or chopping, and single-pass with baling or chopping) and on-farm storage (outdoor and indoor bales, outdoor wrapped bales, and chopped stover in bags, bunks, or piles). For three- and two-pass harvest, chopping was 33–45% more expensive than baling. For baling and chopping, two-pass harvest was 25% cheaper than three-pass. Single-pass chopping harvests were on average 42% cheaper than three-pass or two-pass chopping. Single-pass baling was cheaper (4–31%) than multi-pass baling at low rates of stover collection, but more expensive (1–39%) at high rates of collection. For bales, outdoor storage of wrapped bales was cheapest. Outdoor, unwrapped bale storage, even with 12% dry matter loss, was cheaper than indoor storage. For chopped stover, storage in bags was always cheapest, followed by piles, and then bunkers. With harvest and storage together, there were four least cost systems: single-pass, ear-snap baling with wrapped bale storage; single-pass chopping with silage bag storage; and two-pass baling with wrapped-bale storage. A second group of harvest/storage systems was 25% more expensive, including single-pass, whole-plant baling with wrapped-bale storage; two-pass chopping with silage-bag storage; and three-pass baling with wrapped-bale storage. The three-pass chop harvest with silage bag storage was most expensive. Our analysis suggests all harvest and farm storage systems have tradeoffs and several systems can be economically and logistically viable.  相似文献   

15.
The Hawaii Natural Resource Information System (HNRIS) is a geographical information system and database designed to facilitate the development and implementation of agricultural and environmental technology. Consisting of seven major data files, a set of resource retrieval and interpretation programs/models and a database maintenance/management program, HNRIS is a cost- and time-efficient tool to assist landowners, planners and other decision-makers in Hawaii in making critical land-use and natural resource management decisions. This paper describes the hardware, software and performance of HNRIS, and features an application of HNRIS to estimate yield and delivered cost of tropical hardwood feedstocks in a short-rotation woody biomass production system.  相似文献   

16.
With relatively minor adjustments in the agricultural sector, large additional amounts of starch derived from feed corn, surplus and distressed grain, and set-aside land could presently be used for ethanol production. The quantity of ethanol that could be produced would be sufficient to replace anywhere from 5 to 27 per cent (5.5–30 billion gallons) of present gasoline requirements. Thus, the ethanol requirement for total gasohol use (10 per cent) in the U.S. could be met in the short period of time required for facility construction with no evident impact on food production. Increased supplies of ethanol will make feasible the introduction of ethanol fueled engines. High-yield sugar crops planted on new acreage could provide an additional 10 billion gal. of ethanol by the year 2000; conversion of the waste biomass from this crop to ethanol could also add substantially to this amount. Utilization of novel cellulose conversion technology can provide fermentable sugars from municipal wastes, agricultural and forest wastes, and ultimately, highly productive silvicultural operations. The wastes alone could yield over 36 billion gal. of 192° PR ethanol-fuel by the year 2000. Fast-growing woody species from silviculture are expected to yield a conservative average of 10 over-dry tons per acre per yr, convertible to 710 gal. of ethanol in a process that has 37 per cent yield. Advantages over sugar/starch crops include year-round harvesting, and use of marginal acreage. Commercial forest land presently suitable for silviculture is about 100 million acres in large tracts plus 200 million acres in small private tracts. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced efficiency transport sector in the U.S. at present mileage demands. No conflict with food production would be necessary.  相似文献   

17.
Renewable energy sources are expected to represent a growing proportion of the primary energy sources for the production of electricity. Environmental and social reasons support this tendency. European and Spanish energy plans assign a role of primary importance to biomass in general and, especially, to forest biomass for the period up to 2010. This paper reviews, organises and quantifies the potentials and values of this renewable resource in the foremost Spanish Region in terms of silviculture. The non-market externalities (environmental, economic and social) are classified, and some of them are quantified to present a synthesis of the benefits of a partial substitution of fossil fuels by forest biomass for electricity generation.  相似文献   

18.
《Biomass & bioenergy》2007,31(9):601-607
In Australia, the Mandatory Renewable Energy Target (MRET) scheme, which targets a 9.5 TWh per annum increase in renewable electricity generation by 2010, is stimulating interest in bioenergy. Development of bioenergy projects may cause competition for biomass resources. For example, sawmill residues are an attractive feedstock for bioenergy, but are also utilised for particleboard manufacture. This study compares the greenhouse gas (GHG) mitigation impacts of alternative scenarios where sawmill residues are used either for generation of electricity or for manufacture of particleboard. The study considers a theoretical particleboard plant processing 100 kt feedstock of dry sawmill residues per annum. If the sawmill residues are used instead for bioenergy, and the particleboard plant utilises fresh plantation biomass, 205 kt CO2eq emissions are displaced. However, GHG emissions for particleboard manufacture increase by about 38 kt CO2eq, equivalent to 19% of the fossil fuel emissions displaced, due to the higher fossil fuel requirements to harvest, transport, chip and dry the green biomass. Also, plantation carbon stock declines by 147 kt CO2eq per year until a new equilibrium is reached after 30 years. This result is influenced particularly by the fossil fuel displaced, the relative efficiency of the fossil fuel and bioenergy plants, the moisture content of the sawmill residues, and the efficiency of the dryer in the particleboard plant.Under MRET, calculation of Renewable Energy Certificates is based solely on the quantity of power generated. This study illustrates that indirect consequences can reduce the GHG mitigation benefits of a bioenergy project. Increased emissions off-site, and loss of forest carbon stock, should be considered in calculating the net GHG mitigation benefit, and this should determine the credit earned by a bioenergy project.  相似文献   

19.
Islands offer the advantages of notional deep ocean wind stations without the problems of mounting wind turbines in a hostile marine environment. In principle, island wind-power stations could take advantage of rich (up to Class 7) wind resources. Because connection to an electricity grid will be difficult for most island-based systems, electrical energy could be converted into hydrogen (by electrolyzing seawater) and stored for use on the island or shipped to the mainland. To attain the benefits of high-speed wind-turbine systems, several technical and policy issues, dealing with wind resources, specialized wind-turbine equipment, and the political and economic potential of island wind stations, need to be addressed. Until such multifaceted research can be completed, the technical potential for island-based wind turbines will remain just that—potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号