首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biomass & bioenergy》2006,30(10):870-873
Amorphous zirconia catalysts, titanium-, aluminum-, and potassium-doped zirconias, were prepared and evaluated in the transesterification of soybean oil with methanol at 250 °C, and the esterification of n-octanoic acid with methanol at 175–200 °C. Titanium- and aluminum-doped zirconias are promising solid catalysts for the production of biodiesel fuels from soybean oil because of their high performance, with over 95% conversion in both of the esterifications.  相似文献   

2.
According to the differences in components, three representative components (plastic, kitchen garbage and wood) in municipal solid waste (MSW) were pyrolyzed in a fixed bed reactor to evaluate the influence of particle size on pyrolysis performance of single-component municipal solid waste (MSW). The bed temperature was set at 800°C and each sample was separated into three different size fractions (0–5 mm, 5–10 mm and 10–20 mm). The results show for all the samples particle size has an effect on pyrolysis product yields and composition: smaller particle size results in higher gas yield with less tar and char; the decrease of particle size can increase H2 and CO contents of gas, as well as the ash and carbon element contents in the char. And the influence is the much more significant for sample with higher fixed carbon and ash contents, such as kitchen garbage, and less for sample with higher volatile content, plastic in the test.  相似文献   

3.
Catalytic steam gasification is considered one of promising technologies for converting solid carbonaceous feedstocks into hydrogen-rich syngas, which is an important source of hydrogen for various industrial sectors. The K2CO3-catalyzed steam gasification of low rank coals (LRCs) was conducted in a fixed bed reactor for elucidating the effects of gasifying temperature and catalyst loading amount on hydrogen yield. Hydrogen-rich syngas can be obtained at gasifying temperature of 800 °C and loading amount of 10 wt% K2CO3. The loading amount of 10 wt% K2CO3 was the saturation point and provided a good gasification reactivity in catalytic steam gasification of three LRCs. The experimental data of these three LRCs were well described by the random pore model (RPM). The RPM fitted the experimental data at 800 °C better than the experimental data obtained at 700 °C and 600 °C. Reactivity index (R0.5), activation energy (Ea) and reaction rate constant (k) were also used to predict the characteristics of the K2CO3-catalyzed steam gasification process. Catalytic steam gasification utilizing the mixture of three LRCs as a feedstock was also investigated and displayed XC of 86.22% and 0.95 mol mol?1-C, indicating a good feasibility and potential industrial applications.  相似文献   

4.
Municipal solid waste, in the form of paper waste, has been converted into liquid oil by a fixed bed pyrolysis process. Favorable properties for pyrolysis conversion such as high volatile content, elemental composition, and thermochemical behavior of the waste were investigated by characterization study. The waste paper feedstock was pyrolyzed in an externally heated 7 cm diameter, 38 cm high fixed bed reactor with nitrogen as a carrier gas. The pyrolysis oil was collected in a series of condenser and ice-cooled collectors. The char was separately collected while the gas was flared. The effect of process conditions, like fixed bed reactor temperature, feedstock size and effect of running time on the product yields, was studied. The composition of the oil was determined at a bed temperature of 450 °C, at which the liquid yield was maximum. The liquid product was analyzed for physical, elemental and chemical composition using Fourier transform infra-red (FTIR) spectroscopy.  相似文献   

5.
6.
《能源学会志》2020,93(4):1737-1746
The aim of this study was to investigate the potential of combined catalyst (ZSM-5 and CaO) for high quality bio-oil production from the catalytic pyrolysis of pinewood sawdust that was performed in Py-GC/MS and fixed bed reactor at 500 °C. In Py-GC/MS, the maximum yield of aromatic hydrocarbon was 36 wt% at biomass to combined catalyst ratio of 1:4 where the mass ratio of ZSM-5 to CaO in the combined catalyst was 4:1. An increasing trend of phenolic compounds was observed with an increasing amount of CaO, whereas the highest yield of phenolic compounds (31 wt%) was recorded at biomass to combined catalyst ratio of 1:4 (ZSM-5: CaO - 4:1). Large molecule compounds could be found to crack into small molecules over CaO and then undergo further reactions over zeolites. The water content, higher heating value, and acidity of bio-oil from the fixed bed reactor were 21%, 24.27 MJkg−1, and 4.1, respectively, which indicates that the quality of obtained bio-oil meets the liquid biofuel standard ASTM D7544-12 for grade G biofuel. This research will provide a significant reference to produce a high-quality bio-oil from the catalytic pyrolysis of woody biomass over the combined catalyst at different mass ratios of biomass to catalyst.  相似文献   

7.
A uniform pressure model is presented to describe the heat and mass transfer in a fixed bed of solid adsorbent in a finned reactor. This model neglects the resistance to mass diffusion but takes into account the resistances to heat diffusion through two coefficients: the heat conductivity of the adsorbent bed and the heat transfer coefficient between the adsorbent bed and the fins. An experiment has been conducted to validate this model and the two heat transfer coefficients are obtained by an identification technique. When the temperature of the closed reactor is modified on one side of the reactor, large temperature inhomogeneities inside the reactor are observed and mass transfer occurs through a heat pipe effect: the model explains that effect which is observed experimentally. That uniform pressure model is more adapted to describe the history of solid adsorbent reactors used in thermal processes than uniform temperature models proposed by other authors.  相似文献   

8.
The increasing world's energy demand and environmental concerns related to GHG emissions as well as depleting fossil fuel resources and unstable prices of crude oil and natural gas have caused a renewed interest in renewable energy sources, and in particularly in biomass, as an alternative to fossil fuels. In the paper the results of steam gasification of Salix Viminalis, Miscanthus X Giganteus (MXG), and Andropogon Gerardi in a laboratory-scale fixed bed reactor in the temperature range of 650–900 °C are presented as well as the procedure and results of biomass chars reactivity testing in the process of steam gasification. The highest reactivity R50 in the whole temperature range was observed for MXG. Hydrogen content in the synthesis gas was comparable for MXG and Andropogon Gerardi and lower for Salix Viminalis, while the volumes of the synthesis gas and hydrogen were highest for MXG at all temperatures.  相似文献   

9.
This research is devoted to the use of ethanol (i.e. bio-ethanol) in the combined production and purification of hydrogen by redox processes. The process has been studied in a single lab scale fixed bed reactor. Iron oxides, apart from their remarked redox behavior, exert an important catalytic role allowing the complete decomposition of ethanol at temperatures in the range from 625 to 750 °C. The resulting gas stream (mainly H2 and CO) reduces the solid to metallic iron. During a subsequent oxidation with steam, the solid can be regenerated to magnetite producing high purity hydrogen (suitable to be used in PEM fuel cells). Even though small amounts of coke are deposited during the reduction step, this is barely gasified by steam during the oxidation step (detection of COx in concentrations lower than 1 ppm). Influence of parameters like temperature, ethanol partial pressure and alternate cycles' effect has been studied in order to maximize the production of pure hydrogen.  相似文献   

10.
桐油制备生物柴油的研究   总被引:3,自引:0,他引:3  
以桐油为原料,研究了高酸值原料油的预酯化工艺条件,以及酯交换反应过程中甲醇加入的方式.对桐油预酯化工艺条件的研究结果表明,在搅拌速度一定的情况下,预酯化工艺的最佳条件为醇油摩尔比7∶1、硫酸用量为1.5%(质量比)、反应温度70℃、反应时间2 h;在研究的四个因素(醇油摩尔比,催化剂浓度,反应温度,反应时间)中,反应温度对酯化反应转化率的影响最大.在酯交换反应过程中,对分批加入甲醇的初步研究结果表明,在醇油摩尔比6 ∶1、KOH浓度 1%(质量比)、反应温度60℃、反应时间1 h的条件下,分两批加入甲醇的收率比一次加入甲醇的收率提高了4%.  相似文献   

11.
12.
Kinetics of shale oil generation in a fixed bed retort is modeled using a second order rate equation. Samples from Ellajjun oil shale deposits are tested in 350–550 °C temperatures range. In each run, 400 g are charged to reactor and heated in a range of 2.2–10 °C min−1. Shale oil liquid is condensed at 0 ± 2 °C and its rate measured as function of time and temperature.  相似文献   

13.
This study introduces an innovative process of generating hydrogen-rich gas from biomass through the catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Water hyacinth was used as the biomass feedstock. The effects of various factors such as pyrolysis temperature, catalytic bed temperature, residence time, catalyst, and the nickel content of the catalyst on the pyrolysis productivity were investigated and the yields of H2, CO, CH4, and CO2 were obtained. Results showed that the high productivity of hydrogen can be obtained particularly by increasing the catalytic bed temperature, residence time, and catalysts. The favorable reaction conditions are as follows: a first-stage pyrolysis temperature of 650 °C–700 °C, a second-stage catalytic bed temperature of 800 °C, a catalytic pyrolysis reaction time of 17 min, and a nickel content of 9% (wt %).  相似文献   

14.
Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m3/h and 350 to 550 °C. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m3/h, particle size of 0.7–1.0 mm and pyrolysis temperature of 500 °C. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel.  相似文献   

15.
In this paper, the results obtained in the catalytic decomposition of methane in a fixed bed reactor using a NiCuAl catalyst prepared by the fusion method are presented. The influences of reaction temperature and space velocity on hydrogen concentration in the outlet gases, as well as on the properties of the carbon produced, have been investigated. Reaction temperature and the space velocity both increase the reaction rate of methane decomposition, but also cause an increase in the rate of catalyst deactivation. Under the operating conditions used, the carbon product is mainly deposited as nanofibers with textural properties highly correlated with the degree of crystallinity.  相似文献   

16.
In the present study, waste rapeseed oil with high free fatty acids (FFA) was used as feedstock for producing biodiesel. In the pretreatment step, FFA was reduced by distillation refining method. Then, biodiesel was produced by alkaline-catalyzed transesterification process, which was designed according to the 24 full-factorial central composite design. The response surface methodology (RSM) was used to optimize the conditions for the maximum conversion to biodiesel and understand the significance and interaction of the factors affecting the biodiesel production. The results showed that catalyst concentration and reaction time were the limiting conditions and little variation in their value would alter the conversion. At the same time, there was a significant mutual interaction between catalyst concentration and reaction time.The biodiesel produced in the present experiment was analyzed by gas chromatography/mass spectrometry (GC/MS), which showed that it mainly contained six fatty acid methyl esters. In addition, the diesel indexes analysis showed that most of the fuel properties were in reasonable agreement with the 0# diesel standard of China (GB252-2000) and the biodiesel standard of America (ASTM D6751).  相似文献   

17.
The extraction of petroleum and natural gas is often accompanied by a large number of associated gases, especially the high CO2 content reservoirs facing the emission of a large amount of CO2. CO2 methanation is recognized as one of the suitable candidates for CO2 utilization to reduce the emission of CO2. Because of the highly exothermic nature of the reaction, however, it is very important to enhance the heat transfer process inside the reactor and inhibit the formation of hot spots. In the fixed bed reactor, the heat transfer in the radial direction is greatly limited compared with that in the axial direction. Thus, this work adopted the radial flow reactor to evaluate the CO2 methanation process by the means of a numerical model based on OpenFOAM. Four types of radial flow reactor configurations, namely centrifugal Z-type, centrifugal Π-type, centripetal Z-type, and centripetal Π-type, were compared. The fluid flow, heat transfer, and reaction performances for these reactors were discussed under consistent operating conditions. Results show that the centrifugal Π-type structure has the most uniform flow field. In terms of heat transfer and reaction performance, the centripetal Z-type structure is the best among the four radial flow reactor configurations. These findings provide a theoretical basis and technical guidance for designing and developing radial flow reactors.  相似文献   

18.
Catalytic steam reforming of bio-oil is a promising process for producing hydrogen in a sustainable environmentally friendly way that can improve the utilization of local resources (natural sources or wastes). However, there remain drawbacks such as coke formation that produce operational problems and deactivation of the catalysts. Coprecipitated Ni/Al catalysts are here used in a fluidized bed for reforming at 650 °C of acetic acid as a model compound of bio-oil–aqueous fraction. Different strategies are applied in order to study their effects on the catalytic steam reforming process: modification of the catalyst by increasing the calcination temperature or adding promoters such as calcium. The addition of small quantities of oxygen is also tested resulting in an optimum percentage to achieve a high carbon conversion process with less coke and without a hydrogen yield penalty production. The results for catalytic steam reforming are compared with other ones from literature.  相似文献   

19.
The production of synthesis gas has gained increasing importance because of its use as raw material for various industrial syntheses. In this paper synthesis gas generation during the reaction of a coal/methane with steam and oxygen, which is called the co-gasification of coal and natural gas, was investigated using a laboratory scale fixed bed reactor. It is found that about 95% methane conversion and 80% steam decomposition have been achieved when the space velocity of input gas (oxygen and methane) is less than 200 h−1 and reaction temperature about 1000 °C. The product gas contains about 95% carbon monoxide and hydrogen. The reaction system is near the equilibrium when leaving the reactor.  相似文献   

20.
A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 °C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (–OH, Brönsted acid sites), hydrophobicity that prevented the hydration of –OH species, hydrophilic functional groups (–SO3H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号