首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model for ammonia–water bubble absorbers was developed and compared with experimental data using a plate heat exchanger. The analysis was performed carrying out a sensitive study of selected operation parameters on the absorber thermal load and mass absorption flux. Regarding the experimental data, the values obtained for the solution heat transfer were in the range 0.51–1.21 kW m?2 K?1 and those of the mass absorption flux in the range 2.5–5.0 × 10?3 kg m?2 s?1. The comparison between experimental and simulation results was acceptable being the maximum difference of 11.1% and 28.4% for the absorber thermal load and the mass absorption flux, respectively.  相似文献   

2.
Low depth geothermal heat exchangers can be efficiently used as a heat sink for building energy produced during summer. If annual average ambient temperatures are low enough, direct cooling of a building is possible. Alternatively the heat exchangers can replace cooling towers in combination with active cooling systems. In the current work, the performance of vertical and horizontal geothermal heat exchangers implemented in two office building climatisation projects is evaluated.A main result of the performance analysis is that the ground coupled heat exchangers have good coefficients of performance ranging from 13 to 20 as average annual ratios of cold produced to electricity used. Best performance is reached, if the ground cooling system is used to cool down high temperature ambient air. The maximum heat dissipation per meter of ground heat exchanger measured was lower than planned and varied between 8 W m?1 for the low depth horizontal heat exchangers up to 25 W m?1 for the vertical heat exchangers.The experimental results were used to validate a numerical simulation model, which was then used to study the influence of soil parameters and inlet temperatures to the ground heat exchangers. The power dissipation varies by ±30% depending on the soil conductivity. The heat conductivity of vertical tube filling material influences performance by another ±30% for different materials. Depending on the inlet temperature level to the ground heat exchanger, the dissipated power increases from 2 W m?1 for direct cooling applications at 20 °C up to 52 W m?1 for cooling tower substitutions at 40 °C. This directly influences the cooling costs, which vary between 0.12 and 2.8€ kW h?1.As a result of the work, planning and operation recommendations for the optimal choice of ground coupled heat exchangers for office building cooling can be given.  相似文献   

3.
A satellite technique was adopted to assess solar energy potential in Kampuchea. The study aims to explore solar irradiation potential and distribution under the influence of Asian monsoons over land and a large water surface of a lake by using the satellite technique, with a relatively small spatial scale, which have never been accessed before. In this study, the solar irradiation potential over Kampuchea (10°N–14.5° N, 101.5°E–105°E) was estimated at interval of half a degree grid. The seasonal variations of mean daily solar irradiation in Kampuchea were measured during two Asian winter and summer monsoon seasons.The results revealed that the mean solar irradiation depends more on orographic effects than on seasonal changes. During the winter monsoon, the local minimal means of daily solar irradiation were found on the great Lake Tonle Sap and on the northern, windward side of the Elephant Mountain with a range of 13–14 MJ m?2 day?1. The local maximal means of daily solar irradiation were found on the northwestern part of Kampuchea, with a value of 18 MJ m?2 day?1. In contrast, during the summer monsoon, the local minimal means of daily solar irradiation were, again, found on the same mountainous region of the Elephant Mountain, but the area of minimal means shifted to the southern side where it is the windward side of the mountain during the summer monsoon with a value of 12 MJ m?2 day?1. The local maximal means of the daily solar irradiation were found scattered over various areas: south of Lake Tonle Sap and at various places in the north and northwestern parts of the country, with a range of 18–19 MJ m?2 day?1. It was also found that a high mean of solar irradiation is generally associated with a low standard deviation, i.e., it is less in temporal variation.  相似文献   

4.
An experimental investigation on two-phase flow boiling heat transfer with refrigerants of R-22, R-134a, R-410A, C3H8 and CO2 in horizontal circular small tubes is presented. The experimental data were obtained over a heat flux range of 5–40 kW m?2, mass flux range of 50–600 kg m?2 s?1, saturation temperature range of 0–15 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5, 1.5 and 3.0 mm, and lengths of 330, 1000, 1500, 2000 and 3000 mm. The experimental data were mapped on Wang et al. (1997) [5] and Wojtan et al. (2005) [6] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the heat transfer coefficient are reported. The experimental heat transfer coefficients were compared with some existing correlations. A new boiling heat transfer coefficient correlation that is based on a superposition model for refrigerants in small tubes is presented with 15.28% mean deviation and ?0.48% average deviation.  相似文献   

5.
6.
The development of absorption chillers activated by renewable heat sources has increased due mainly to the increase in primary energy consumption that causes problems such as greenhouse gases and air pollution among others. These machines, which could be a good substitute for compression systems, could be used in the residential and food sectors which require a great variety of refrigeration conditions. Nevertheless, the low efficiency of these machines makes it necessary to enhance heat and mass transfer processes in the critical components, mainly the absorber, in order to reduce their large size.This study used ammonia–water as the working fluid to look at how absorption takes place in a plate heat exchanger operating under typical conditions of absorption chillers, driven by low temperature heat sources. Experiments were carried out using a corrugated plate heat exchanger model NB51, with three channels, where ammonia vapor was injected in bubble mode into the solution in the central channel. The results achieved for the absorption flux were in the range of 0.0025–0.0063 kg m?2 s?1, the solution heat transfer coefficient varied between 2.7 and 5.4 kW m?2 K?1, the absorber thermal load from 0.5 to 1.3 kW. In addition, the effect of the absorber operating conditions on the most significant efficiency parameters was analyzed. The increase in pressure, solution and cooling flow rates positively affect the absorber performance, on the other hand an increase in the concentration, cooling, and solution temperature negatively affects the absorber performance.  相似文献   

7.
Solar photovoltaic (PV) hybrid system technology is a hot topic for R&D since it promises lot of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (KSA) being endowed with fairly high degree of solar radiation is a potential candidate for deployment of PV systems for power generation. Literature indicates that commercial/residential buildings in KSA consume an estimated 10–45% of the total electric energy generated. In the present study, solar radiation data of Dhahran (East-Coast, KSA) have been analyzed to assess the techno-economic viability of utilizing hybrid PV–diesel–battery power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kW h). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kW h/m2. NREL's HOMER software has been used to carry out the techno-economic viability. The simulation results indicate that for a hybrid system comprising of 80 kWp PV system together with 175 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 26%. The cost of generating energy (COE, US$/kW h) from the above hybrid system has been found to be 0.149 $/kW h (assuming diesel fuel price of 0.1 $/L). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Emphasis has also been placed on unmet load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), cost of PV–diesel–battery systems, COE of different hybrid systems, etc.  相似文献   

8.
《Journal of power sources》2002,111(1):185-190
The performance of a newly designed, polyaniline–activated carbon, hybrid electrochemical capacitor is evaluated. The capacitor is prepared by using polyaniline as a positive electrode and activated carbon as a negative electrode. From a constant charge–discharge test, a specific capacitance of 380 F g−1 is obtained. The cycling behaviour of the hybrid electrochemical capacitor is examined in a two-electrode cell by means of cyclic voltammetry. The cycle-life is 4000 cycles. Values for the specific energy and specific power of 18 Wh kg−1 and 1.25 kW kg−1, respectively, are demonstrated for a cell voltage between 1 and 1.6 V.  相似文献   

9.
This study compares well-known two-phase pressure drop models with the experimental results of a condensation pressure drop of (i) R600a in a 1 m long horizontal smooth copper tube with an inner diameter of 4 mm, outer diameter of 6 mm and (ii) R134a in a 0.5 m vertical smooth copper tube with an inner diameter of 8.1 mm and outer diameter of 9.52 mm. Different vapour qualities (0.45–0.9 for R600a and 0.7–0.95 for R134a), various mass fluxes (75–115 kg m?2 s?1 for R600a and 300–400 for R134a kg m?2 s?1) and different condensing temperatures (30–43 °C for R600a and 40–50 °C for R134a) were tested under annular flow conditions. The quality of the refrigerant in the test section was calculated considering the temperature and pressure obtained from the experiment. The pressure drop across the test section was directly measured with a differential pressure transducer. The most agreeable correlations of various available options were then identified according to the results of analysis during annular flow regime.  相似文献   

10.
Experiments on flow boiling heat transfer in high aspect ratio micro-channels with FC-72 were carried out. Three channels with different hydraulic diameters (571, 762 and 1454 μm) and aspect ratios (20, 20 and 10) were selected. The tested mass fluxes were 11.2, 22.4 and 44.8 kg m?2 s?1 and heat fluxes ranging from 0–18.6 kW m?2. In the present study, boiling curves with obvious temperature overshoots are presented. Average heat transfer coefficient and local heat transfer coefficient along stream-wise direction are measured as a function of heat flux and vapour quality respectively. Slug-annular flow and annular flow are the main flow regimes. Convective boiling is found to be the dominant heat transfer mechanism. Local heat transfer coefficient increases with decreasing hydraulic diameter. Moreover, the effect of hydraulic diameter is more significant when mass flux is higher. The unique channel geometry is considered as the decisive reason of the flow regimes as well as heat transfer mechanisms.  相似文献   

11.
The wind speed and direction as well as the availability, the duration and the diurnal variation of two offshore sites, Zakinthos and Pylos (BZK and BPY) in the Ionian Sea were assessed. For an analysis period of two years, the mean wind speed at 10 m was determined as 5.7 ± 0.1 m s?1 and 5.8 ± 0.1 m s?1 for the BZK and BPY sites, respectively. The wind speed variations over the hours of the day were quite small. The monthly variation in the average wind speeds was between 4.3 (May) and 7.5 m s?1 (December) for the BZK site and 4.4 (August) and 7.3 m s?1 (December) for the BPY site. Moreover, QuikSCAT satellite mean values for the grids of the two buoy regions were systematically overestimated in comparison to the buoy data with differences in the range from 8 to 13%. Statistical analysis revealed the high QuikSCAT data uncertainty for wind speeds less than 5 m s?1 as the major factor of the observed mean value differences. The mean wind power densities were calculated with the buoy wind speed measurements and were found more than 250 W m?2 at 10 m, suggesting the suitability of the sites for offshore wind energy applications. Capacity factors of up to 48% for energy production were calculated with the existing offshore turbines technology at a hub height of 100 m. Furthermore, the energy yield for different wind turbines and a service life of 20 years were determined from 6.5 to 8.7 and the energy pay-back periods from 2.8 to 2.1 years, respectively. The maximum avoided greenhouse emissions were 140 kt CO2-e for an offshore turbine generator of 5 MW and a period of 20 years.  相似文献   

12.
The aim of this work is to investigate the energy potential of using exposed concrete structures as solar energy absorbers (here denoted with the general term of Massive Solar-Thermal Collectors, MSTCs) during the heating period and in particular the design of a Concrete Solar Collector (CSC) is then presented. The CSC is a particular kind of MSTC, conceived as an exposed free standing structure that embeds a coiled pipe heat exchanger in a massive-concrete matrix. A numerical design model has been developed and parametric simulations have been conducted in order to get a figure of the energy potential of the CSC under different European climate conditions. The CSC has reached an energy yield of 460.77 kW h/m2/y and an average heat flux of 93.07 W/m2 for the reference climate of Stuttgart (Germany) during the winter season (inlet fluid temperature of −5 °C and mass-flow rate of 45 kg/h/m2). The Elementary Effect Method has been adopted as Sensitivity Analysis procedure with the aim of understanding the dependency of design parameters on the energy output. Finally, an economic analysis has been carried out by comparing investment costs and energy outputs.  相似文献   

13.
This project presents an investigation and assessment of the wind energy potential in Penang Island, located about 15 km off the west (W) coast of Peninsular Malaysia. The wind data were statistically analyzed using Rayleigh distribution function. Based on the investigation, the results show that the measurement site falls under Class 1 of the International System Wind Classification. The climate in Penang Island is highly influenced by the northeast (NE) and southwest (SW) monsoon seasons. Besides that, most of the wind is the prevailing wind from the north (N) and SW directions. Meanwhile, the directions that contribute higher energy frequency are from NE and south-southwest (SSW). The mean annual wind power density (WPD) in this regime is estimated to be about 24.54 W m?2. Furthermore, the mean annual wind energy density (WED) is also forecast to be 17.98 kWh m?2 month?1. The total annual WED is 216 kWh m?2 year?1. Thus, the results of this investigation indicate that the grid-network connected to the wind turbine-generator systems may not be a commercially viable proposal in Penang. Nevertheless, a small-scale wind turbine system is more suitable and sustainable in Penang Island.  相似文献   

14.
In the European Union, electricity production from wind energy is projected to increase by approximately 16% until 2020. The Austrian energy plan aims at increasing the currently installed wind power capacity from approximately 1 GW to 3 GW until 2020 including an additional capacity of 700 MW until 2015. The aim of this analysis is to assess economically viable wind turbine sites under current feed-in tariffs considering constraints imposed by infrastructure, the natural environment and ecological preservation zones in Austria. We analyze whether the policy target of installing an additional wind power capacity of 700 MW until 2015 is attainable under current legislation and developed a GIS based decision system for wind turbine site selection.Results show that the current feed-in tariff of 9.7 ct kW h−1 may trigger an additional installation of 3544 MW. The current feed-in tariff can therefore be considered too high as wind power deployment would exceed the target by far. Our results indicate that the targets may be attained more cost-effectively by applying a lower feed-in tariff of 9.1 ct kW h−1. Thus, windfall profits at favorable sites and deadweight losses of policy intervention can be minimized while still guaranteeing the deployment of additional wind power capacities.  相似文献   

15.
《Journal of power sources》2001,96(1):233-235
The use of metal based bipolar plates in polymer electrolyte membrane (PEM) fuel cells, with an active coating on titanium to reduce voltage losses due to the formation of passive layers has been demonstrated. Lifetime data in excess of 8000 h has been achieved and power densities in excess of 1.8 kW dm−3 and 1 kW kg−1 are predicted.  相似文献   

16.
The nanocomposite material of amorphous manganese oxide and acetylene black (HSMO/AB), was synthesized by sonochemical method. The acetylene black particles were homogeneously coated with amorphous manganese oxide. In order to demonstrate that these characteristic structures were suitable for rapid discharge–charge, the composite material was tested under large current density. The result exhibited 185 mAh g−1 in specific discharge capacity under 10 A g−1 in current density. Assuming that an operating voltage of 2.5 V, this capacity corresponded 20 kW kg−1 in power density and 90 Wh kg−1 in energy density.  相似文献   

17.
Microbial fuel cells (MFCs) are facing several technological challenges before they can be considered as reliable energy sources. Although several feasible inocula, materials and catalysts have been employed to produce energy, the design of a MFC should be done under realistic conditions: abundant and economic feedstock. In this study, two different MFC designs (parallel plate and tank reactors) are tested with non-catalyzed carbon electrodes and natural inocula. In both approaches cathodic oxygen reduction is performed on two different non-catalyzed carbon materials: carbon fabric and reticulate vitreous carbon. This study shows that power and current densities can be boosted by systematically decreasing the catholyte resistance (by additions of NaCl or Na2SO4) and dissolved oxygen concentration. In the parallel plate cell configuration, a mixed culture coming from sludge wastewater was used and power outputs up to 73 mW m?2 (2867 mW m?3) coupled to 187 mA m?2 (anode surface area), were achieved. In the Sediment MFC cell configuration, lagoon sediment was used as both organic source of energy and natural supply of bacteria. Under this approach, the concentration of the organic matter is limited but it is demonstrated that bacteria can be adapted to degrade acetate. Power outputs up to 3.9 mW m?2 normalized to the anodic electrode footprint area, coupled to 13 mA m?2 were achieved.  相似文献   

18.
The wind energy potential for generation of electricity and for domestic water pumping has been investigated for Marsabit, Kenya. Marsabit (37° 58′N, 2° 19′E) lies in Eastern province approximately 560 km from Nairobi. Wind data from the Kenya Meteorological department for the period 2001–2006 has been used to study the Diurnal, monthly and inter-annual variability using empirical methods including the Power law and Weibull statistics. Average wind speeds greater than11 m/s at a height of 10 m are prevalent in this area. The available power density at a height of 100 m is between 1776 W/m2 and 2202 W/m2 which is in the wind class range of 7 and 8. The maximum extractable power density at 100 m varied between 1417 W/m2 and 1757 W/m2. Values of Weibull parameters k (dimensionless) and c (m/s) ranged between 2.5–3.05 and 11.86–12.97 respectively. Wind Rose analysis revealed no marked variation in wind direction and frequency throughout the year (mean direction between 150 and 160 degrees with highest standard deviation of 33.5 degrees). From the analysis, the site was found suitable for grid connected power generation and also for other stand-alone generators that can be used for water pumping and battery charging.  相似文献   

19.
The current paper presents experimental investigation of nucleate pool boiling of R-134a and R-123 on enhanced and smooth tubes. The enhanced tubes used were TBIIHP and TBIILP for R-134a and R-123, respectively. Pool boiling data were taken for smooth and enhanced tubes in a single tube test section. Data were taken at a saturation temperature of 4.44 °C. Each test tube had an outside diameter of 19.05 mm and a length of 1 m. The test section was water heated with an insert in the water passage. The insert allowed measurement of local water temperatures down the length of the test tube. Utilizing this instrumentation, local heat transfer coefficients were determined at five locations along the test tube. The heat flux range was 2.5–157.5 kW/m2 for the TBIIHP tube and 3.1–73.2 kW/m2 for the TBIILP tube. The resulting heat transfer coefficient range was 4146–23255 W/m2. °C and 5331–25950 W/m2. °C for both tubes, respectively. For smooth tube testing, the heat flux ranges were 7.3–130.7 kW/m2 and 7.5–60.7 kW/m2 for R-134a and R-123, respectively; with resulting heat transfer coefficient ranges of 1798.9–11,379 W/m2. °C and 535.4–3181.8 W/m2. °C. The study provided one of the widest heat flux ranges ever examined for these types of tubes and showed significant structure to the pool boiling curve that had not been traditionally observed. Additionally, this paper presented an investigation of enhanced tubes pool boiling models.  相似文献   

20.
Food waste is approximately 20–30% of the household garbage in Taiwan. There are several ways to use recycled food waste, swine feeding and composting are the two main ways in Taiwan. The objective of this study was to evaluate the potentials of food wastes for power generation and energy conservation in Taiwan. The assessment was conducted by using the related statistics of Taiwan. The results showed that the total amount of food wastes recycled increased from 167,304 to 570,176 Mg y?1 (+240%) during the period from 2003 to 2006, and increased from 139,614 to 452,550 Mg y?1 (+224%) and from 22,290 to 112,666 Mg y?1 (+405%) for swine feeding and composting during the same period, respectively. Potential of food wastes for power generation was 68.0 GWh y?1, and that excluding swine feeding and composting were 14.0 and 54.5 GWh y?1 in Taiwan in 2006, respectively. On the other hand, energy conservation potential of food wastes for compost production was 122 MWh y?1, comparing with energy consumption of chemical fertilizer (ammonium sulfate and calcium superphosphate) production in Taiwan in 2006. The results also suggested that food wastes recycled can not only reduce the amount of the garbage, but also showed the potentials for power generation and energy conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号