首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na+ and MgO on the structure and CO2 adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5-1.5 mm exhibited an excellent capacity for CO2 adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm3∙mol1) to CaCO3 (36.9 cm3∙mol1) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO2 capture capacity (9.49 mmol∙g1), average adsorption rate (0.32 mmol∙g1∙min1) and conversion rate of CaO (74.83%) after 30 cycles.  相似文献   

2.
Octavinyl polyhedral oligomeric silsesquioxane (POSS) was polymerized on the surface of Fe3O4 nanoparticles (NPs) and then the NPs were functionalized with carboxylic acid groups using thiol-ene click reactions with thioglycolic acid.The as-prepared Fe3O4@POSS-COOH magnetic hybrid NPs had mesoporous structures with an average particle diameter of 15 nm and a relatively high specific surface area of 447 m^2· g^-1.Experimental results showed that 4 mg of Fe3O4@POSS-COOH NPs efficiently adsorbed and removed methylene blue from water at 5 min.This is due to the presence of both carboxylic acid and pendant vinyl groups on the Fe3O4@POSS-COOH NPs.These NPs could be easily withdrawn from water within a few seconds under moderate magnetic field and showed high stability in acid and alkaline aqueous mediums.  相似文献   

3.
Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.  相似文献   

4.
For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.  相似文献   

5.
The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability. Considering the close connection between their performance and the amount of carbon material loaded on the electrodes, in this work, NiCo2O4 nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction. Then, the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo2O4 nanowires, and the obtained composite was used as electrode for electric double layer capacitor. The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF∙cm–2 at the current density of 1 mA∙cm–2. The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW∙h∙cm–3 at a power density of 180 mW∙cm–3. The assembled symmetric capacitor exhibited a capacitance retention of 88.96% after 10000 charge/discharge cycles at the current density of 20 mA∙cm–2. These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.  相似文献   

6.
Mesoporous Y zeolites were prepared by the sequential chemical dealumination (using chelating agents such as ethylenediaminetetraacetic acid, H4EDTA, and citric acid aqueous solutions) and alkaline desilication (using sodium hydroxide, NaOH, aqueous solutions) treatments. Specifically, the ultrasound-assisted alkaline treatment (i.e., ultrasonic treatment) was proposed as the alternative to conventional alkaline treatments which are performed under hydrothermal conditions. In comparison with the hydrothermal alkaline treatment, the ultrasonic treatment showed the comparatively enhanced efficiency (with the reduced treatment time, i.e., 5 min vs. 30 min, all with 0.2 mol·L−1 NaOH at 65°C) in treating the dealuminated Y zeolites for creating mesoporosity. For example, after the treatment of a dealuminated zeolite Y (using 0.1 mol·L−1 H4EDTA at 100°C for 6 h), the ultrasonic treatment produced the mesoporous zeolite Y with the specific external surface area (Sexternal) of 160 m2·g1 and mesopore volume (Vmeso) of 0.22 cm3·g1, being slightly higher than that by the conventional method (i.e., Sexternal = 128 m2·g1 and Vmeso = 0.19 cm3·g1). The acidic property and catalytic activity (in catalytic cracking of n-octane) of mesoporous Y zeolites obtained by the two methods were comparable. The ultrasonic desilication treatment was found to be generic, also being effective to treat the dealuminated Y zeolites by citric acid. Additionally, the first step of chemical dealumination treatment was crucial to enable the effective creation of mesopores in the parent Y zeolite (with a silicon-to-aluminium ratio, Si/Al= 2.6) regardless of the subsequent alkaline desilication treatment (i.e., ultrasonic or hydrothermal). Therefore, appropriate selection of the condition of the chemical dealumination treatment based on the property of parent zeolites, such as Si/Al ratio and crystallinity, is important for making mesoporous zeolites effectively.  相似文献   

7.
A simple method was developed to tune the porosity of coal-derived activated carbons, which provided a model adsorbent system to investigate the volumetric CO2 adsorption performance. Specifically, the method involved the variation of the activation temperature in a K2CO3 induced chemical activation process which could yield activated carbons with defined microporous (< 2 nm, including ultra-microporous < 1 nm) and meso-micro-porous structures. CO2 adsorption isotherms revealed that the microporous activated carbon has the highest measured CO2 adsorption capacity (6.0 mmol∙g–1 at 0 °C and 4.1 mmol∙g–1 at 25 °C), whilst ultra-microporous activated carbon with a high packing density exhibited the highest normalized capacity with respect to packing volume (1.8 mmol∙cm−3 at 0 °C and 1.3 mmol∙cm–3 at 25 °C), which is significant. Both experimental correlation analysis and molecular dynamics simulation demonstrated that (i) volumetric CO2 adsorption capacity is directly proportional to the ultra-micropore volume, and (ii) an increase in micropore sizes is beneficial to improve the volumetric capacity, but may lead a low CO2 adsorption density and thus low pore space utilization efficiency. The adsorption experiments on the activated carbons established the criterion for designing CO2 adsorbents with high volumetric adsorption capacity.  相似文献   

8.
李群艳  孙路瑶  常其飞  周运炉 《化工进展》2022,41(10):5494-5500
磁性介孔二氧化硅复合材料作为酶固定化载体具有优异的酶固定化性能和良好的磁分离性能,受到国内外学术界广泛关注。本文在自制的β-FeOOH空心微球表面上包覆致密的SiO2保护层,在酸性条件下以P123为模板剂,十六烷基三甲基溴化铵(CTAB)为辅助导向剂成功制备出了磁性β-FeOOH@SiO2@介孔SiO2空心复合微球,最后在还原气氛下煅烧得到Fe3O4@SiO2@介孔SiO2空心微球。结果表明,所制备的Fe3O4@SiO2@介孔SiO2微球空心结构未坍塌,具有规整的球形结构,介孔SiO2壳层(平均厚度约为11nm)均匀地包覆在β-FeOOH@SiO2中空微球表面。伴随着CTAB量的增加,微球的最可几孔径由4.30nm减小到3.19nm,比表面积从376m2/g升高到640m2/g,孔容从0.36cm3/g升高到0.56cm3/g。复合微球的饱和磁化强度为11.3emu/g,矫顽力为111.5Oe,外加磁场作用下可以实现样品的快速分离,且样品的再分散性良好。当介孔孔径为4.30nm时,Fe3O4@SiO2@介孔SiO2空心复合微球漆酶固定量高达234mg/g。固定化漆酶在不同pH、温度下的活性显著优于游离酶。  相似文献   

9.
High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.  相似文献   

10.
In this study, the hydrogen evolution performance of CdS nanorods is improved using ZnCo2O4. ZnCo2O4 nanospheres are synthesized using the hydrothermal and calcination methods, and CdS nanorods are synthesized using the solvothermal method. From the perspective of morphology, numerous CdS nanorods are anchored on the ZnCo2O4 microspheres. According to the experimental results of photocatalytic hydrogen evolution, the final hydrogen evolution capacity of 7417.5 μmol∙g–1∙h–1 is slightly more than two times that of the single CdS, which proves the feasibility of our study. Through various characterization methods, it is proved that the composite sample has suitable optoelectronic properties. In addition, ZnCo2O4 itself exhibits good conductivity and low impedance, which shortens the charge-transfer path. Overall, the introduction of ZnCo2O4 expands the adsorption range of light and improves the performance of photocatalytic hydrogen evolution. This design can provide reference for developing high-efficiency photocatalysts.  相似文献   

11.
Carbon molecular sieve membrane (CMSM)/paper-like stainless steel fibers (PSSF) has been manufactured by pyrolyzing poly (furfuryl alcohol) (PFA) coated on the metal fibers. PFA was synthesized using oxalic acid dihydrate as a catalyst and coated on microfibers by dip coating method. For the purpose of investigating the effects of final carbonization temperature, the composites were carbonized between 400°C and 800°C under flowing nitrogen. The morphology and microstructure were examined by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, N2 adsorption and desorption, Raman spectra and X-ray photoelectron spectra. The consequences of characterization showed that the CMSM containing mesopores of 3.9 nm were manufactured. The specific surface area of the CMSM/PSSF fabricated in different pyrolysis temperature varies from 26.5 to 169.1 m2∙g1 and pore volume varies from 0.06 to 0.23 cm3∙g1. When pyrolysis temperature exceeds 600°C, the specific surface, pore diameter and pore volume decreased as carbonization temperature increased. Besides, the degree of graphitization in carbon matrix increased with rising pyrolysis temperature. Toluene adsorption experiments on different structured fixed bed that was padded by CMSM/PSSF and granular activated carbon (GAC) were conducted. For the sake of comparison, adsorption test was also performed on fixed bed packed with GAC. The experimental results indicated that the rate constant k′ was dramatically increased as the proportion of CMCM/PSSF composites increased on the basis of Yoon-Nelson model, which suggested that structured fixed bed padded with CMSM/PSSF composite offered higher adsorption rate and mass transfer efficiency.  相似文献   

12.
为改善碳材料比电容低的问题以及氧化铁(Fe2O3)导电性和循环稳定性差的问题,采用氧化铁修饰生物质衍生碳(ATC)表面制备氧化铁/生物质碳(Fe2O3/ATC)复合材料,通过氧化铁和生物质衍生碳的协同效应使复合材料获得更高的比电容和更好的稳定性。利用扫描电镜(SEM)、X射线光电子能谱(XPS)、拉曼(Raman)光谱等技术手段对样品进行了表征。结果表明,制备的复合材料存在一定的孔隙结构,氧化铁纳米粒子被锚定在碳表面。当氧化铁和生物质衍生碳的质量比为1:1时,制备的复合材料具有最优的电化学性能,在3.0 mol/L氢氧化钾溶液中显示出430.8 F/g(电流密度约为1.0 A/g)的高比电容,电流密度增大20倍时电容保持率大于60%。将其作为负极构建的不对称超级电容器具有较高的电压窗口(0~1.6 V),并且实现了39.1 W·h/kg的高能量密度;同时表现出优异的循环稳定性,在电流密度为10 A/g下循环5 000次后拥有111%的电容保持率。  相似文献   

13.
A facile one-step hydrothermal method has been adopted to directly synthesize the CuCo2S4 material on the surface of Ni foam. Due to the relatively large specific surface area and wide pore size distribution, the CuCo2S4 material not only effectively increases the reactive area, but also accommodates more side reaction products to avoid the difficulty of mass transfer. When evaluated as anode for Li-ion batteries, the CuCo2S4 material exhibits excellent electrochemical performance including high discharge capacity, outstanding cyclic stability and good rate performance. At the current density of 200 mA·g−1, the CuCo2S4 material shows an extremely high initial discharge capacity of 2510 mAh·g−1, and the cycle numbers of the material even reach 83 times when the discharge capacity is reduced to 500 mAh·g−1. Furthermore, the discharge capacity can reach 269 mAh·g−1 at a current of 2000 mA·g−1. More importantly, when the current density comes back to 200 mA·g−1, the discharge capacity could be recovered to 1436 mAh·g−1, suggesting an excellent capacity recovery characteristics.  相似文献   

14.
利用固相烧结法制备出基础配方为ZnO–A12O3–MgO–TiO2–SiO2–Fe2O3的ZnO线性电阻。研究了Fe2O3掺杂量对ZnO线性电阻微观结构、阻温特性和阻频特性的影响。结果表明:当Fe2O3掺杂量为0.75%(质量分数)时,氧化锌线性电阻的非线性系数为1.12,阻温系数取得–8.23×103/℃,此时样品的综合性能最好。  相似文献   

15.
刘俊逸  李倩  李杰  曾国平  吴田  杨昌柱 《化工进展》2019,38(11):5158-5164
含酚废水来源广泛自然条件下难以去除,酚类物质毒性大对生态环境和人类生活健康造成了较严重的影响。本文选取了有机废水处理中较为高效的臭氧催化氧化技术,使用臭氧氧源曝气产生大量的含氧自由基,催化氧化降解酚类有机物,同时对活性中心载体进行了优化,选取制备了一类水热稳定性好及机械强度高的多孔材料,使用这些多孔材料对活性中心Fe2O3进行了再组装,合成了一系列表面富集Fe2O3的SBA-15介孔薄膜材料,由于SBA-15材料较大的比表面积、丰富的孔隙结构、高度分散的活性中心,在臭氧催化氧化含酚废水中取得了较好效果。苯酚溶液初始浓度为100mg/L (COD 238mg/L)、Fe2O3(5)/SBA-15催化剂投加量为30g、臭氧气体流量为2mg/min、废水HRT为5min、流量为0.8L/h的条件下,该催化剂能高效连续稳定运行500h不易失活,其COD去除率仍能保持在65%以上,催化剂活性依然保持在83%以上。Fe2O3/SBA-15类介孔催化材料在深度处理含酚废水中具有工业化应用潜质。  相似文献   

16.
The NiSO4 supported on Fe2O3-promoted ZrO2 catalysts were prepared by the impregnation method. Fe2O3-promoted ZrO2 was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt.%, indicating good dispersion of nickel sulfate on the surface of Fe2O3–ZrO2. The addition of nickel sulfate (or Fe2O3) to ZrO2 shifted the phase transition of ZrO2 (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or Fe2O3) and ZrO2. 15-NiSO4/5-Fe2O3–ZrO2 containing 15 wt.% NiSO4 and 5 mol% Fe2O3, and calcined at 500 °C exhibited a maximum catalytic activity for ethylene dimerization. NiSO4/Fe2O3–ZrO2 catalysts was very effective for ethylene dimerization even at room temperature, but Fe2O3–ZrO2 without NiSO4 did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of Fe2O3 up to 5 mol% enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between Fe2O3 and ZrO2 and due to consequent formation of Fe–O–Zr bond.  相似文献   

17.
NiCoP4O12/NiCoP nanorod-like arrays with tunable grain boundary density and pores were synthesized by the processes composed of hydrothermal and pyrolysis, in which, the electron structure of Ni and Co atoms characterized by X-ray photoelectron spectroscopy was contemporaneous inverse manipulated. The optimized NiCoP4O12/NiCoP arrays have a high specific capacitance of 507.8 μAh∙cm–2 at 1 mA∙cm–2, and good rate ability of 64.7% retention at 30-folds increased current density. Importantly, an ultra-stable ability, 88.5% of retention after 10000 cycles, was achieved in an asymmetric cell assembled of the NiCoP4O12/NiCoP arrays with activated carbon. In addition, the energy and power densities of an asymmetric cell were higher than those of other work, demonstrating as-prepared NiCoP4O12/NiCoP arrays are promising electrodes for supercapacitors.  相似文献   

18.
The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.  相似文献   

19.
Aqueous zinc-ion batteries are attracting considerable attention because of their high safety compared with conventional lithium-ion batteries. Manganese-based materials have been widely developed for zinc-ion batteries cathode owning to their low cost, high security and simple preparation. However, the severe volume expansion and poor stability during charging and discharging limit the further development of manganese-based cathodes. Herein, superior α-MnO2@g-C3N4 was successfully prepared for stable zinc-ion batteries (ZIBs) cathode by introducing g-C3N4 nanosheets. Compared with pure α-MnO2, α-MnO2@g-C3N4 has a specific capacity of 298 mAh·g–1 at 0.1 A·g–1. Even at 1 A·g–1, the α-MnO2@g-C3N4 still retains 100 mAh·g–1 (83.4% retention after 5000 cycles), implying its excellent cycling stability. The α-MnO2@g-C3N4-based cathode has the highest energy density (563 Wh·kg–1) and power energy density (2170 W·kg–1). This work provides new avenues for the development of a wider range of cathode materials for ZIBs.  相似文献   

20.
采用改进Stöber法制备超顺磁Fe3O4@SiO2复合粒子作为催化剂载体,再通过浸渍法将H3PW12O40(HPW)负载在Fe3O4@SiO2载体上,制备了一系列超顺磁负载型催化剂HPW/Fe3O4@SiO2。并使用X射线衍射(XRD)、傅里叶红外(FT-IR)、氨的程序升温脱附(NH3-TPD)、扫描电镜(SEM)、N2吸附-脱附和振动样品强磁计(VSM)对催化剂进行表征。结果表明,HPW固定并均匀分散在Fe3O4@SiO2载体上,40% HPW/Fe3O4@SiO2催化剂具有较高的饱和磁强度 (30.1 emu·g-1)和较大的比表面积 (303.6 m2·g-1),并可用外加磁场进行分离。采用40% HPW/Fe3O4@SiO2催化噻吩与1-辛烯组成的模拟汽油的烷基化脱硫反应,在160℃下反应2 h,噻吩转化率达到85.5%,有较好的催化脱硫性能,且可以多次循环利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号