首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exergetic efficiency of heat receiver in solar thermal power system is optimized by considering the heat loss outside the receiver and fluid viscous dissipation inside the receiver. The physical models of heat loss and pumping power consumption for solar heat receiver are first proposed, and associated exergetic efficiency is further induced. As the flow velocity rises, the pumping power consumption and heat absorption efficiency significantly rises, and the maximum absorption efficiency and optimal incident energy flux also increase. Along the flow direction of solar receiver, the exergy flux increment and the flow exergy loss almost linearly increase, while the exergetic efficiency varies very slowly at high flow velocity. According to the exergetic efficiency loss from flow viscou’s dissipation, the exergetic efficiency of solar heat receiver will first increase and then decrease with the flow velocity. Because of the coupling effects of heat absorption efficiency and exergetic efficiency from fluid internal energy, the exergetic efficiency of solar heat receiver will approach to the maximum at proper inlet temperature. As a result, the exergetic efficiency of solar heat receiver will reach the maximum at optimal inlet temperature, incident energy flux and flow velocity.  相似文献   

2.
Lu Jianfeng  Yang Jianping 《Solar Energy》2010,84(11):1879-1887
The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux.  相似文献   

3.
基于太阳能选择性吸收涂层的辐射性能,建立聚光太阳能吸热管光热耦合传输的数理模型,理论研究聚光太阳能吸热管的吸热传热特性。研究表明,吸热管壁温度随着聚光能流密度增加而线性升高,而吸热效率在中等聚光能流密度时达最大值。太阳能选择性吸收涂层性能对吸热传热有重要影响,具有低红外发射系数涂层的系统吸热效率明显较高,而红外辐射能量损失率则在中等聚光能流密度时最小。管内强迫对流可以显著提高吸热管效能,吸热效率随流速增加而提高,而管壁温度则显著下降。  相似文献   

4.
The solidification and melting phenomena and performances of molten salt during cold filling process in a straight pipe are numerically investigated using volume of fluid model. As the molten salt is filled into a cold pipe, the molten salt adjacent to the cold wall is rapidly cooled, and the solidification phenomena appears. After the whole pipe is filled, the solidification layer begins to melt by high temperature fluid heating. Because of the solidification layer, the flow section obviously shrinks, and the pressure loss remarkably increases. During the solidification and melting processes, the fluid temperature in the region with phase change only varies near the freezing point, and it quickly rises after the melting process. Because of the absorption or release of latent heat, the boundary heat flux of molten salt is increased in the solidification region, while it will be decreased in the melting region. As the inlet temperature rises, the pressure loss apparently decreases with the thickness of solidification layer decreasing. However, when the inlet flow velocity increases, the thickness of solidification layer decreases, but the flow resistance without phase change increases, so the pressure loss has a maximum at moderate flow velocity.  相似文献   

5.
为解决液化空气储能系统(LAES)压缩热利用不完全的问题,构建了耦合有机朗肯循环的液化空气储能系统(ORC-LAES)。对ORC-LAES系统建立热力学性能计算模型,在设计参数下分析压缩机出口压力、膨胀机入口压力、加压水初温、加压水流量比及膨胀机级数对ORC-LAES系统性能的影响。结果表明,当压缩机出口压力由6 MPa上升到16 MPa、加压水初温从293 K上升到323 K时,系统的循环效率、火用效率和液化率均下降;当膨胀机入口压力由8 MPa上升到18 MPa时,系统循环效率和火用效率均增加;当加压水流量比由0.51上升到0.96时,系统循环效率和火用效率先增加再减少,流量比为0.71时,系统的循环效率和火用效率达到最大;在压缩热利用上耦合有机朗肯循环要优于增加膨胀机级数;ORC-LAES系统与LAES系统相比,循环效率提高4.8%,火用效率提升5.1%。  相似文献   

6.
The exergetic performance of concentrating type solar collector is evaluated and the parametric study is made using hourly solar radiation. The exergy output is optimized with respect to the inlet fluid temperature and the corresponding efficiencies are computed. Although most of the performance parameters, such as, the exergy output, exergetic and thermal efficiencies, stagnations temperature, inlet temperature, ambient temperature etc. increase as the solar intensity increases but the exergy output, exergetic and thermal efficiencies are found to be the increasing function of the mass flow rate for a given value of the solar intensity. The performance parameters, mentioned above, are found to be the increasing functions of the concentration ratio but the optimal inlet temperature and exergetic efficiency at high solar intensity are found to be the decreasing functions of the concentration ration. On the other hand, for low value of the solar intensity, the exergetic efficiency first increases and then decreases as the concentration ratio is increased. This is because of the reason that the radiation losses increase as the collection temperature and hence, the concentration ratio increases. Hence, for lower value of solar intensity, there is an optimal value of concentration ratio for a given mass flow rate at which the exergetic efficiency is optimal. Again it is also observed that the mass flow rate is a critical parameter for a concentrating type solar collector and should be chosen carefully.  相似文献   

7.
该文研究太阳光照条件、环境温度、风速、风向等因素对塔式太阳能热发电熔盐吸热器整体热效率和散热损失的影响规律,讨论吸热器的运行策略及其对系统效率的影响.吸热器的运行受风速和入射能量的影响较大,受风向和环境温度的影响较小.额定出口温度模式下,当风速超过7m/s时,对流散热损失超过辐射散热损失.风速对吸热器局部对流散热损失的...  相似文献   

8.
提出一种适用于抛物槽集热器的新型太阳能腔式吸热器,该装置具有较高的集热效率,同时连接安装和日常运行维护也相对便利。对其建立一套三维传热模型,并搭建采用新型腔式吸热器的抛物槽集热器实验系统,通过实验测试对比吸热器瞬时效率,验证模型的准确性。此外,定量分析不同环境参数与工作参数对新型腔式吸热器热性能的影响,结果表明:集热效率随着法向直接日射辐照度、环境温度的升高而增加,随着环境风速和吸热器入口传热流体温度的升高而降低,而受传热流体质量流量的影响较小。  相似文献   

9.
Optimum aperture size and operating temperature of a solar cavity-receiver   总被引:1,自引:0,他引:1  
For solar cavity-receivers operating at high temperatures, the optimum aperture size results from a compromise between maximizing radiation capture and minimizing radiation losses. When the absorbed solar energy is utilized as high temperature process heat, the energy conversion efficiency can be represented as the product of the energy absorption efficiency and the Carnot efficiency. We describe a simple, semiempirical method to determine the optimum aperture size and optimum operating temperature of a solar cavity-receiver for which its energy conversion efficiency is maximum. Such optimization strongly depends on the incident solar flux distribution at the aperture plane of the receiver. We analytically examine the case of a Gaussian distribution of the incident power flux, and we compare theoretical results with the results obtained when using an optically measured flux distribution. Using Monte-Carlo ray tracing, we further investigate the influence of sunshape on the optimal parameters of a cavity-receiver in a paraboloidal concentrator.  相似文献   

10.
In this paper, an exergetic optimization of flat plate solar collectors is developed to determine the optimal performance and design parameters of these solar to thermal energy conversion systems. A detailed energy and exergy analysis is carried out for evaluating the thermal and optical performance, exergy flows and losses as well as exergetic efficiency for a typical flat plate solar collector under given operating conditions. In this analysis, the following geometric and operating parameters are considered as variables: the absorber plate area, dimensions of solar collector, pipes' diameter, mass flow rate, fluid inlet, outlet temperature, the overall loss coefficient, etc. A simulation program is developed for the thermal and exergetic calculations. The results of this computational program are in good agreement with the experimental measurements noted in the previous literature. Finally, the exergetic optimization has been carried out under given design and operating conditions and the optimum values of the mass flow rate, the absorber plate area and the maximum exergy efficiency have been found. Thus, more accurate results and beneficial applications of the exergy method in the design of solar collectors have been obtained.  相似文献   

11.
Deep borehole heat exchanger (DBHE) is attracting attention intensively owing to much more geothermal extraction, higher efficiency for heat pumps, and lesser land demand compared with shallow borehole heat exchanger. DBHE is usually dipped into several thousand meters in the subsurface, having a complicated heat transfer with surrounding rock–soil. However, the heat transfer characteristics below surface under different conditions are rarely studied. In this study, a numerical model considering the comprehensive effects of geothermal gradients and heat loss from inner pipe was proposed. The model was validated with experimental data and Beier analytical solution. Based on the model, the effects of primary design parameters on the heat transfer performance below surface along the pipe were investigated. The results indicate that temperature at pipe bottom increases with inlet flow rate decreasing, while the heat load cannot be extracted fully to the surface because of the heat loss of inner pipe. When the inlet flow rates decrease from 41.39 to 4.52 m3/h, the heat loss ratio increases from 25.5% to 63.7%. It is an effective way of insulating inner pipe to reduce heat loss under low inlet flow rates. Increasing the velocity in inner pipe by lessening the inner pipe diameter can also decline the heat loss well. While by this way, the increasing pumping power resulting from the higher velocity in inner pipe has to be considered. This study is significant to effective optimization of DBHE and energy conservation of buildings.  相似文献   

12.
A mathematical model for the overall exergetic efficiency of two phase change materials named PCM1 and PCM2 storage system with a concentrating collector for solar thermal power based on finite-time thermodynamics is developed. The model takes into consideration the effects of melting temperatures and number of heat transfer unit of PCM1 and PCM2 on the overall exergetic efficiency. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the air which assumes that the temperature of the air varies in its flow path. The results show that the overall exergetic efficiency can be improved by 19.0-53.8% using two PCMs compared with a single PCM. It is found that melting temperatures of PCM1 and PCM2 have different influences on the overall exergetic efficiency, and the overall exergetic efficiency decreases with increasing the melting temperature of PCM1, increases with increasing the melting temperature of PCM2. It is also found that for PCM1, increasing its number of heat transfer unit can increase the overall exergetic efficiency, however, for PCM2, only when the melting temperature of PCM1 is less than 1150 K and the melting temperature of PCM2 is more than 750 K, increasing the number of heat transfer unit of PCM2 can increase the overall exergetic efficiency. Considering actual application of solar thermal power, we suggest that the optimum melting temperature range of PCM1 is 1000-1150 K and that of PCM2 is 750-900 K. The present analysis provides theoretical guidance for applications of two PCMs storage system for solar thermal power.  相似文献   

13.
Energy and exergy analyses of an ice-on-coil thermal energy storage system   总被引:1,自引:0,他引:1  
Mehmet Akif Ezan  Aytunç Erek 《Energy》2011,36(11):6375-6386
In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube.  相似文献   

14.
In this paper, exergy modeling is used to assess the exergetic performance of a novel trigeneration system using parabolic trough solar collectors (PTSC) and an organic Rankine cycle (ORC). Four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration. In this trigeneration system a single-effect absorption chiller is utilized to provide the necessary cooling energy and a heat exchanger is utilized to provide the necessary heating energy. The trigeneration system considered is examined using three modes of operation. They are: solar mode during the low-solar radiation time of the day, solar and storage mode during the high-solar radiation time of the day, and storage mode during night time. The storage mode is operated through the heat collected in a thermal storage tank during the solar and storage mode. The exergy efficiencies and exergy destruction rates are examined under the variation of the ORC evaporator pinch point temperature, ORC pump inlet temperature, and turbine inlet pressure. This study reveals that the maximum electrical-exergy efficiency for the solar mode is 7%, for the solar and storage mode is 3.5%, and for the storage mode is 3%. Alternatively, when trigeneration is used, the exergy efficiency increases noticeably. The maximum trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode is 8%, and for the storage mode is 7%. Moreover, this study shows that the main sources of exergy destruction rate are the solar collectors and ORC evaporators. Therefore, careful selection and design of these two components are essential to reduce the exergy destructed by them and, thus, increase the exergy efficiencies of the system.  相似文献   

15.
Parabolic trough collectors are the most mature technology for utilizing the solar energy in high temperature applications. The objective of this study is the thermal efficiency enhancement of the commercial parabolic collector IST-PTC by increasing the convective heat transfer coefficient between the working fluid and the absorber. There are two main factors which influence on this parameter, the working fluid type and the absorber geometry. For this reason three working fluids are investigated, thermal oil, thermal oil with nanoparticles and pressurized water. Moreover, a dimpled absorber tube with sine geometry is tested because this shape increases the heat transfer surface and increases the turbulence in the flow. The final results show that these two techniques improve the heat transfer coefficient and the thermal efficiency of the collector. More specifically, the use of nanofluids increases the collector efficiency by 4.25% while the geometry improvement increases the efficiency by 4.55%. Furthermore, collector parameters such as the heat loss coefficient, the exergetic efficiency, the pressure losses and the absorber temperature are presented for all the examined cases. The model is designed with Solidworks and is simulated by its flow simulation studio.  相似文献   

16.
The third-generation heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency and will continue to be challenging issues. This paper presents condensation heat transfer performance of an edge-shaped finned tube fabricated by a ploughing–extruding process. The edge-shaped finned tube integrates more than one heat transfer enhancement technology and can enhance the heat transfer capacity greatly. It is seen that the overall heat transfer coefficient and heat flux increase with inlet velocity of cold water increasing, and decrease with inlet temperature of cold water increasing, whereas the shell-side heat transfer coefficient decreases with inlet velocity of cold water increasing and increases with inlet temperature of cold water increasing. At the same inlet velocity, the shell-side heat transfer coefficient for the edge-shaped finned tube is improved by 5–7 times compared to that of a smooth tube. At the same temperature difference between wall and vapor, the shell-side heat transfer coefficient is also higher than what had been reported in the literature. The shell-side heat transfer coefficient of the edge-shaped finned tube decreases with the increase of fabrication parameter feed at the same inlet velocity or inlet temperature of cold water.  相似文献   

17.
为了改善太阳能不能连续稳定输出的问题,针对填料床放热过程,采用数值模拟方法研究了传热流体流速,温度以及填料床的高径比对填料床动态放热特性的影响规律。结果表明:在计算条件下,提高传热流体流速和温度是改善放热速率的关键参数,而提高填料床高径比有利于降低放热速率。当传热流体的进口流速由0.000 5 m/s 增加至0.001 3 m/s,填料床的平均放热速率提高了150%,放热时间缩短了54%,对放热密度无影响;传热流体进口温度为473 K上升至513 K,填料床的平均放热速率下降了32%,放热时间延长了34%,放热密度下降了6%;填料床高径比由2.32增加至8.33,填料床的放热量无变化,放热完成时间增加了113%,填料床的放热速率下降了129%。  相似文献   

18.
构建了空气与地道壁面换热理论模型,用于计算地埋管出口空气温度,通过正交模拟分析了地埋管管径、长度以及进口风速对地埋管出口空气温度的影响,并与数值模拟结果进行对比.结果 表明:地埋管管径极差值最大,可达20.4 m,是地埋管出口空气温度的主要影响因素,地埋管长度和进口风速为次要因素;随着管径的增大,出口空气温度随之升高;...  相似文献   

19.
为了解决燃气轮机高温部件热防护问题,采用实验研究涡流管在不同进口压力(0.20~0.65 MPa)和冷气流率(0.17~0.89)下的冷却特性。实验结果表明:实际温降,在不同进口压力下随着冷气流率的增加先增大后减小,在相同冷气流率下随着进口压力的增大而增大;温度〖JP2〗效率,在不同进口压力下随着冷气流率的增大先增大后减小,在冷气流率等于0.5时达到最大值;绝热效率,在进口压力等于0.20 MPa时最小,在大于0.30 MPa时随着进口压力的增加变化不大;制冷效率,随冷气流率的增加会先增加后减小,进口压力等于0.30和0.40 MPa时制冷效率最高。  相似文献   

20.
The present study investigates the performance of a multi-generation plant by integrating a parabolic dish solar collector to a steam turbine and absorption chiller producing electricity and process heat and cooling. Thermodynamic modeling of the proposed solar dish integrated multi-generation plant is conducted using engineering equation solver to investigate the effect of certain operating parameters on the performance of the integrated system. The performance of the solar integrated plant is evaluated and compared using three different heat transfer fluids, namely, supercritical carbon dioxide, pressurized water, and Therminol-VPI. The useful heat gain by collector is utilized to drive a Rankine cycle to evaluate the network output, rate of process heat, cooling capacity, overall energetic, and exergetic efficiencies as well as coefficient of performance. The results show that water is an efficient working fluid up to a temperature of 550 K, while Therminol-VPI performs better at elevated temperatures (630 K and above). Higher integrated efficiencies are linked with the lower inlet temperature and higher mass flow rates. The integrated system using pressurized water as a heat transfer fluid is capable of producing 1278 and 832 kW of power output and process heat, respectively, from input source of almost 6121 kW indicating overall energy and exergy efficiencies of 34.5% and 37.10%, respectively. Furthermore, multi-generation plant is evaluated to assess the exergy destruction rate and steam boiler is witnessed to have the major contribution of this loss followed by the turbine. The exergo-environmental analysis is carried out to evaluate the impact of the system on its surroundings. Exergo-environmental impact index, impact factor, impact coefficient, and impact improvement are evaluated against increase in the inlet temperature of the collector. The single-effect absorption cycle is observed to have the energetic and exergetic coefficient of performances of 0.86 and 0.422, for sCO2 operating system, respectively, with a cooling load of 228 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号