首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biogas production potential of different mixtures of cow manure (CM) and three-phase olive mill solid waste (3POMSW) at 37°C was evaluated. Results showed that 3POMSW produced more methane yield than CM. In the anaerobic co-digestion (AcoD) methane yield increased with increasing of 3POMSW content, the maximum methane yield was observed at 3POMSW:CM ratio of 3:1. Addition of an enzyme mixture (Celluclast, Pulpzyme HC, Sherazyme, Novozym 342, and Resinase A 2X) to the 1:1 mixture increased the quantity and quality of biogas production and reduced the retention time required to achieve a high rate of biodegradation. Therefore, AcoD with enzymes was an effective way to improve the methane yield of 3POMSW and CM.  相似文献   

2.
《Biomass & bioenergy》2006,30(10):892-896
Anaerobic treatment of solid wastes from potato processing was studied in completely stirred tank reactors (CSTR) at 55 °C. Special attention was paid to the effect of increased organic loading rate (OLR) on the biogas yield in long-term experiments. Both biogas yield and CH4 in the biogas decreased with the increase in OLR. For OLR in the range of 0.8 gl−1 d−1–3.4 gl−1 d−1, biogas yield and CH4 obtained were 0.85 l g−1–0.65 l g−1 and 58%–50%, respectively. Biogas yield y as a function of maximum biogas yield ym, reaction rate constant k and HRT are described on the basis of a mass balance in a CSTR and a first order kinetic. The value of ym can be obtained from curve fitting or a simple batch test and k results from plotting y/(ymy) against 1/OLR from long-term experiments. In the present study values for ym and k were obtained as 0.88 l g−1 and 0.089 d−1, respectively. The simple model equations can apply for dimensioning completely stirred tank reactors (CSTR) digesting organic wastes from food processing industries, animal waste slurries or biogas crops.  相似文献   

3.
The paper presents the results of a pilot- and full-scale experimental campaign on the anaerobic co-digestion of waste activated sludge and biowaste both in mesophilic and thermophilic conditions. The study demonstrated the possibility to increase the specific biogas production from 0.34 to 0.49 m3/kgTVS and the gas production rate from 0.53 to 0.78 m3per m3 of reactor per day changing the reactor temperature from the mesophilic (37 °C) to the thermophilic (55 °C) range. The experimental work was carried out at pilot-scale, and the results match the full-scale behaviour. Ammonia nitrogen recycled from the anaerobic digestion section to the wastewater treatment plant accounted for about 4% of the total nitrogen loading. Digestate characteristics in terms of biological stability and heavy metals content suggested the opportunity of a short time post-aerobic stabilisation, leading to a high quality compost product.  相似文献   

4.
5.
Anaerobic mono- (AmoD) and co-digestion (AcoD) of two-phase olive oil mill pomace (TPOP) and pig slurry (PS) at different ratios were studied in a semi-continuous stirred tank reactor (sCSTR) at mesophilic temperature (37 °C). The methane yields for AcoD experiments ranged from 150.9 to 274.3 L CH4 kg VS−1 d−1. The maximum chemical oxygen demand (COD) removal rate (59.60%) was achieved for TPOP/PS 80:20 w/w substrate composition at OLR 3.68 g VS Lreactor−1 d−1 and 24 days HRT. Despite the energy production from food waste is not a new process, the industrial implementation and application continue to be a challenge. Hence, the present paper also reports on the economic feasibility study of a full scale anaerobic co-digestion plant to treat 7000 t year−1 and 1750 t year−1 of TPOP and PS, respectively. The results of this study are compared against a conventional PS mono-digestion plant. Net present values (NPV) and payback time periods (PBT) were reported to be 782,493 € and 135,701 € and 6.7 and 9.2 years for AcoD and AmoD plants, respectively. Finally, the sensibility analysis concluded that AcoD configuration is less dependent on energy and compost sale prices variations.  相似文献   

6.
The pilot-scale of two-stage thermophilic (55 °C) for biohythane production from palm oil mill effluent (POME) was operated at hydraulic retention time (HRT) of 2 days and organic loading rate (OLR) of 27.5 gCOD/L⋅d) for first stage and HRT of 10 days and OLR of 5.5 gCOD/L⋅d for second stage. Biohythane production rate was 1.93 L-gas/L⋅d with biogas containing 11% H2, 37% CO2, and 52% CH4. Recirculation of methane effluent mixed with POME at a ratio of 1:1 can control pH in the first stage at an optimal range of 5.0–6.5. Microbial community in hydrogen stage dominated by Thermoanaerobacterium sp., while methane stage dominated by Methanosarcina sp. The H2/CH4 ratio of biohythane was 0.13–0.18 which suitable for vehicle fuel. Biohythane production from POME could be promising cleaner biofuel with flexible and controllable H2/CH4 ratio.  相似文献   

7.
Biogas as a technology and the factors that affect its productivity have both been well studied. Research has previously been done to look at the impact of temperature, pH, organic loading rate, carbon-to-nitrogen ratios, microbial populations and hydraulic retention time on different scales of biogas operations. Small scale biogas installations, of which many millions have been constructed and seem to be performing well, have been chosen as the area of focus for this paper. Such systems allow energy generation on site, thereby eliminating the need for energy intensive transport. This review paper explores the factors that govern the productivity and operational stability of biogas digesters, and goes on to highlight the most important factors for small scale operation.The review reveals that the key factors that govern the productivity and stability of small scale systems are feedstock variability, retention time, temperature and acidity of the system. These are the main parameters which should, therefore, be considered when looking into the potential of biogas as a widespread technology to be deployed to meet energy demands.  相似文献   

8.
Heat and energy requirements in thermophilic anaerobic sludge digestion   总被引:2,自引:0,他引:2  
《Renewable Energy》2003,28(14):2255-2267
The heating requirements of the thermophilic anaerobic digestion process were studied. Biogas production was studied in laboratory experiments at retention times from 1 to 10 days. The data gathered in the experiments was then used to perform a heat and energy analysis. The source of heat was a conventional CHP unit system. The results showed that thermophilic digestion is much faster than mesophilic digestion and therefore produces more biogas in a shorter time or at smaller digester volumes. The major part of the heating requirements consisted of sludge heating. The heat losses of the digester were only 2–8% of the sludge heating requirements. The heating requirements in thermophilic digestion are about twice those of mesophilic digestion. Therefore a CHP unit system cannot cover all of the needs for successful operation of thermophilic digestion. Heat regeneration was introduced as a solution. Heat is regenerated from the sludge outflow at a temperature of 50–55 °C and transferred to the cold inflow sludge at a temperature of 11 °C. Enough heat is regenerated in a conventional counter flow heat exchanger to bring the thermophilic process to the same level as the mesophilic one. Considering the smaller digester volumes and the relatively small investment in the regenerative equipment, the construction of thermophilic digestion systems may be a very good alternative to conventional mesophilic sludge digestion systems.  相似文献   

9.
A non-linear programming model was developed to maximize the economic profit from an anaerobic co-digester. The model consists of a combination of technical and economic equations, linked through the biogas production variable. Five scenarios were simulated. These differed with regard to substrate inlet mass flow rate, organic loading rate and hydraulic retention time. The impact on biogas production was investigated and an economic analysis was undertaken based on the concepts of profitability and Net Present Value. The model results indicate that varying the substrate inlet mass flow rate and organic loading rate could have a positive impact on the profitability of co-digesters in Flanders. This can be achieved either by increasing the interval time between feedstock input, or by feeding individual streams of feedstock separately into the system, while at the same time reducing the hydraulic retention time.  相似文献   

10.
餐厨垃圾特性及其厌氧消化性能研究   总被引:3,自引:1,他引:3  
以校园餐厨垃圾为原料,分析测定了早餐、午餐和晚餐餐厨垃圾的总固体(TS)、挥发性固体(VS)、碳水化合物、蛋白质、脂肪含量以及无机盐离子浓度,并通过批式厌氧发酵试验对3种餐厨垃圾的厌氧消化性能进行了对比研究。结果表明,早餐餐厨垃圾特性与午餐/晚餐餐厨垃圾差异较大,Na+,Ca2+和Cl-含量高于后两者。餐厨垃圾不同特性对其厌氧消化产气及有机物去除率都有一定影响,早餐、午餐和晚餐餐厨垃圾的累积甲烷产量分别为212.2,331.6和362.4 ml/g,早餐餐厨垃圾产气量比午餐和晚餐餐厨垃圾分别低36%和41.4%,其中Cl-含量高可能是造成其产气量低的主要原因。  相似文献   

11.
Anaerobic digester (AD) technology is a form of renewable energy with significant upside potential and little public resistance. However, previous studies have generally found ADs to be a poor investment for private firms without public assistance. The mixed results on the financial feasibility of ADs could be due to the site of the analysis since results vary with size, geographic location or the type of AD system, which are not standardized but rather customized to the individual situation. Given the public and private interest in AD technology and the need to assess the feasibility by site, a decision-making tool that can be adapted for each location and system would aid assessing the investment. This paper presents a freely available workbook to determine the financial feasibility of a farm-based AD and to demonstrate its use. The decision-making tool identifies the technical and financial parameters affecting the returns to an AD and the sensitivity of the assumption to changes in the value of those parameters. An application of the workbook for the Ontario livestock sector demonstrates its usefulness. Investment in an AD is financially feasible only for the largest dairy farms in Ontario under current electricity prices, which are approximately six times greater than the wholesale price. Shifting to a duel fuel continuous system would improve returns, as would the availability of additional substrate material in the form of solid grease and vegetative waste. Reductions in capital cost and improvements in the efficiency of the technology are probable given the relatively infant status of the biogas sector but these future enhancements would likely only alter the investment decisions for large commercial dairy farms.  相似文献   

12.
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCODremoved. The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane.  相似文献   

13.
Small-scale anaerobic digester installation has been a development objective of the Indian government to provide rural households clean fuel. Anaerobic digester installation is heavily subsidised. Depending on caste, the rate of subsidy offered for the smallest system available (1 m3) varies between 32.35% and 41.18% of the total installation price. Yet, there are gaps in knowledge regarding the usefulness of such subsidies from a sustainability perspective. A cost-benefit analysis was conducted to evaluate the circumstances required for digester sustainability. The analysis used household data collected from 115 cattle owning households in Odisha, India to evaluate profitability at three levels of subsidy (none, General caste subsidy, and Schedule Caste/Schedule Tribe subsidy). Additional analyses considered the effect of; taking a loan, replacing electric lighting with biogas lighting, and the wealth level of the household. The results indicated that access to subsidy improved profitability. Yet, profitability could be achieved without the use of subsidy. The level of benefit accrued by households was similar independent of wealth. However, the provision of subsidy was essential for ensuring profitability for those households required to take a loan to meet the expense of installation. Such findings highlight the importance of subsidy as a means of including the poor.  相似文献   

14.
In this work, we study the gasification of pellets produced, after densification, by blending olive mill solid wastes, impregnated or not by olive mill waste water, and pine sawdust under different steam/nitrogen atmospheres. The charcoals necessary for the gasification tests were prepared by pyrolysis using a fixed bed reactor. The gasification technique using steam was chosen in order to produce a hydrogen-enriched syngas. Gasification tests were performed using macro-thermogravimetric equipment. Tests were carried out at different temperatures (750 °C, 800 °C, 820 °C, 850 °C and 900 °C), and at different atmospheres composed by nitrogen and steam at different percentages (10%, 20% and 30%). Results show that the mass variation profiles is similar to the usual lingo-cellulosic gasification process. Moreover, the increase of temperatures or water steam partial pressures affects positively the rate of conversion and the char reactivity by accelerating the gasification process. The increase of the gasification yields demonstrates the promise of using olive mill by-products as alternative biofuels (H2 enriched syngas).  相似文献   

15.
Anaerobic degradation of olive mill wastewater (OMW) at concentrations ranging from 2 to 100 g/L of chemical oxygen demand (COD) was assessed in batch assays. Methane was the main final product obtained for the lower concentrations tested. For 25 g COD/L, H2 was temporarily produced, albeit H2 depletion occurred, likely due to homoacetogenesis, since acetate was formed concomitantly. Hydrogen was produced and accumulated permanently in the assays containing 50 g COD/L of OMW. Methanogenesis and homoacetogenesis were naturally inhibited, suggesting that hydrogen recovery from OMW can be performed without the addition of methanogenic suppressors such as 2-bromoethanosulfonate. This fact opens new perspectives for the utilization of high OMW concentrations in a two-stage valorisation process combining biohydrogen and biomethane production.  相似文献   

16.
Anaerobic hydrogen producing mesophilic and thermophilic cultures were enriched and studied from an intermediate temperature (45 °C) hot spring sample. H2 production yields at 37 °C and 55 °C were highest at the initial pH of 6.5 and 7.5, respectively. Optimum glucose, iron and nickel concentrations were 9 g/l, 25 mg/l and 25 mg/l both at 37 °C and 55 °C, respectively. The highest H2 yields at 37 °C and 55 °C were 1.8 and 1.0 mol H2/mol glucose, respectively, with the optimal pH, glucose concentration and iron addition. Hydrogen production from glucose at 55 °C and 37 °C was associated with ethanol- and acetate–butyrate type fermentations, respectively. Bacterial composition was analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE). Clostridium species dominated at both temperatures and the microbial diversity decreased with increasing temperature. At 55 °C, Clostridium ramosum was the dominant organism.  相似文献   

17.
以糖浆废水和牛粪为底物,采取半连续发酵工艺运行CSTR厌氧发酵系统,考察混合底物中温(35℃)厌氧共发酵产甲烷特性。结果表明:厌氧发酵系统启动后产沼气速率较快,第8 d的沼气产量为350 m L/(L·d),进入稳定期后达到620 m L/(L·d);液相发酵短链挥发性脂肪酸(VFAs)的乙酸含量高于68%。调节进料有机负荷和水力停留时间分别为3.5 g/(L·d)和40 d时,系统运行稳定性与效能最佳,沼气产量为1180 m L/(L·d),甲烷含量高于57%。运用454焦磷酸高通量测序技术分析厌氧发酵系统启动稳定期(40 d)的细菌群落结构和多样性,在细菌属分类水平存在846个OTU,ACE和Chao1分别为2 224.8和1 498.8;Firmicutes门、Proteobacteria门和Bacteroidetes门属优势细菌类群,分别占细菌总数的64.9%,18.2%和9.1%;在属分类水平上,Syntrophomonas sp.为最优势细菌类群,占总丰度的14.5%,其次是Clostridium XI sp.,占总丰度的6.9%。  相似文献   

18.
文章利用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)对厌氧发酵沼液进行絮凝处理,以絮凝率和COD去除率为评价指标,在单因素试验基础上,采用Box-Behnken响应面法,研究PAC投放量、PAM投放量和沼液pH值对絮凝率和COD去除率的影响,并建立数学模型,获得沼液处理的最优条件,最后开展沼液肥效的研究。研究结果表明:当沼液的pH值为6.92,PAC的投放量为912 mg/L,PAM的投放量为21.36 mg/L时,沼液絮凝率和COD去除率达到最大,分别为47.96%和45.1%,总氮去除率为51.1%,总磷去除率为44.3%,氨氮去除率为60.3%;处理后的沼液在低浓度下可促进辣椒幼苗的生长,而未处理的沼液对辣椒幼苗的生长有很强的抑制作用。  相似文献   

19.
Photofermentative hydrogen production from olive mill wastewater (OMW) by Rhodobacter sphaeroides O.U.001 was assessed under iron and molybdenum supplementation. Control cultures were only grown with 2% OMW containing media. The analysis included measurements of biomass accumulation, hydrogen production, pH variations of the medium, and changes in the chemical oxygen demand (COD) of the wastewater. Growth under control and Mo-supplemented experiments yielded about the same amount of biomass (∼0.4 g dry cell weight per L culture). On the other hand, Mo addition slightly enhanced the total volume of H2 gas production (62 mL H2), in comparison with the control reactor (40 mL H2). Fe-supplemented cultures showed a significant increase on H2 production (125 mL H2), tough having a longer lag time for the observation of the first H2 bubbles (24 h), compared to the control (15 h) and Mo-supplemented ones (15 h). Fe-added cultures also yielded better wastewater treatment by achieving 48.1% degradation of the initial chemical oxygen demand (COD) value compared to the control reactor having 30.2% COD removal efficiency. Advances described in this work have the potential to find applications in hydrogen industry while attempting an effective management of cheap feedstock utilization.  相似文献   

20.
Anaerobic digestion of dewatered-sewage sludge using continuous stirred tank reactors (CSTRs) in duplicates was evaluated under thermophilic (50 °C) and mesophilic (37 °C) conditions over a range of nine solid retention times (SRTs). The 35- and 30-day SRTs were designed to simulate a full-scale plant operation while 25-, 20-, 15- and 12-day SRTs were planned to evaluate process performance at the various SRTs. The 9-, 5- and 3-day SRTs were performed to push the reactors to extend their degradation capacity and test the threshold for process imbalance. The corresponding organic loading rates (OLR) varied from 1.6 to 20.5 kg VS m?3 day?1. Biogas production rate could be tripled when the SRT was shortened from 30 to 12 days and more than doubled from 35- to 15-day SRT because of a concomitant increase in OLR. In general, higher biogas productivity was realized under thermophilic, but methane yields were comparable due to the higher methane content in the biogas under mesophilic digestion. The methane content in biogas fluctuated between 55 and 65% and the methane yield ranged from 0.314 to 0.348 Nm3 CH4 kg VSadded?1 day?1 for both thermophilic and mesophilic digestion. The VS-reduction at 12- and 15-day SRT ranged from 45 to 52% and there was no accumulation of VFAs. Increasing concentrations of VFAs, decreasing concentration of partial alkalinity and decrease in pH were noted as signs of reactor instability. Process imbalance started at 9-day SRT, souring of the reactors, cell wash-out and foaming was noted as the principal causes of process failure under both thermophilic and mesophilic conditions. This study projected the possibility of using CSTRs in treating dewatered-sewage sludge at a shorter SRT to achieve reasonable biogas production and VS-reduction without encountering adverse operation conditions as foaming and wash-out of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号