首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antilock braking system (ABS), traction control system, etc. are used in modern automobiles for enhanced safety and reliability. Autonomous ABS system can take over the traction control of the vehicle either completely or partially. An antilock braking system using an on–off control strategy to maintain the wheel slip within a predefined range is studied here. The controller design needs integration with the vehicle dynamics model. A single wheel or a bicycle vehicle model considers only constant normal loading on the wheels. On the other hand, a four wheel vehicle model that accounts for dynamic normal loading on the wheels and generates correct lateral forces is suitable for reliable brake system design. This paper describes an integrated vehicle braking system dynamics and control modeling procedure for a four wheel vehicle. The vehicle system comprises several energy domains. The interdisciplinary modeling technique called bond graph is used to integrate models in different energy domains and control systems. The bond graph model of the integrated vehicle dynamic system is developed in a modular and hierarchical modeling environment and is simulated to evaluate the performance of the ABS system under various operating conditions.  相似文献   

2.
Antilock braking system (ABS), traction control system, etc. are used in modern automobiles for enhanced safety and reliability. Autonomous ABS system can take over the traction control of the vehicle either completely or partially. An antilock braking system using an on–off control strategy to maintain the wheel slip within a predefined range is studied here. The controller design needs integration with the vehicle dynamics model. A single wheel or a bicycle vehicle model considers only constant normal loading on the wheels. On the other hand, a four wheel vehicle model that accounts for dynamic normal loading on the wheels and generates correct lateral forces is suitable for reliable brake system design. This paper describes an integrated vehicle braking system dynamics and control modeling procedure for a four wheel vehicle. The vehicle system comprises several energy domains. The interdisciplinary modeling technique called bond graph is used to integrate models in different energy domains and control systems. The bond graph model of the integrated vehicle dynamic system is developed in a modular and hierarchical modeling environment and is simulated to evaluate the performance of the ABS system under various operating conditions.  相似文献   

3.
The purpose of the antilock braking system (ABS) is to regulate the wheel longitudinal slip at its optimum point in order to generate the maximum braking force; however, the vehicle braking dynamic is highly nonlinear. To relax the requirement of detailed system dynamics, this paper proposes an intelligent exponential sliding-mode control (IESMC) system for an ABS. A functional recurrent fuzzy neural network (FRFNN) uncertainty estimator is designed to approximate the unknown nonlinear term of ABS dynamics, and the parameter adaptation laws are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the stable control performance. Since the outputs of the functional expansion unit are used as the output weights of the FRFNN uncertainty estimator, the FRFNN can effectively capture the input–output dynamic mapping. In addition, a nonlinear reaching law, which contains an exponential term of sliding surface to smoothly adapt the variations of sliding surface, is designed to reduce the level of the chattering phenomenon. Finally, the simulation results demonstrate that the proposed IESMC system can achieve robustness slip tracking performance in different road conditions.  相似文献   

4.
防抱制动系统滑模状态观测和控制系统仿真   总被引:2,自引:0,他引:2  
该文在考虑不平路面随机激励作用下车辆垂向振动的基础上 ,首先建立了四分之一车辆制动模型 ,而后充分运用滑移模式变结构的分析和设计方法 ,提出了车轮最佳滑移率的滑模实时在线辨识滑模优化算法 ,在对系统可观测性论证的基础上 ,设计了非线性滑模状态观测器 ,给出了单通道防抱制动系统基于滑移率的滑模控制算法 ,通过计算机仿真 ,验证了该控制算法的可行性和有效性 ,为设计具有高鲁棒性的防抱制动系统做了一定的理论探索和仿真工作  相似文献   

5.
We investigate the stability and robustness properties of anti-lock braking systems (ABS) based on actuators with on/off dynamics. Namely, we propose a hybrid ABS controller which gives rise to an asymptotically stable limit cycle on the wheel slip. The proposed approach allows to derive exact information on the maximum allowable uncertainty in the measured variables which guarantee the cycle stability. Moreover, a structural stability analysis is performed with respect to different road conditions and to the actuator rate limit.  相似文献   

6.
In this paper, an adaptive controller called Grey-Verhulst Sliding Mode Controller (GVSMC) is proposed for the laboratory Antilock Braking System (ABS). The developed Grey-Verhulst Model (GVM) does a better prediction of wheel slip than a simple Grey Model. The first order Sliding Mode Controller (SMC) maintains the wheel slip at the desired value. By combining the GVM and SMC, the resulting GVSMC controls the wheel slip at the desired optimum value at which the vehicle control, non-skidding and steerability are ensured during sudden braking. The proposed controller also reduces the stopping distance considerably. Simulation results show that the performance of the proposed GVSMC is better than the simple SMC and Grey SMC reported in literature earlier. Change in road conditions has also been considered.  相似文献   

7.
This article focuses on automatic cruise control for electrically driven vehicles. The objective is to track a given vehicle‐velocity profile. For this type of application, the so‐called wheel slip plays a key role, as it is a measure for the force transmitted from the wheel to the road. Conventional wheel‐ slip controllers are usually activated if the absolute value of the slip exceeds pre‐assumed thresholds. Furthermore, it is distinguished between a braking and acceleration maneuver using separately designed and implemented controllers. In contrast, the proposed concept requires neither an activation strategy for the slip controller nor a distinction between braking and acceleration. The cascaded control structure is based upon adaptive‐gains super twisting sliding‐mode algorithm, and the friction force estimator is realized as a second‐order sliding‐mode observer with constant gains. The effectiveness and robustness of the proposed concept are demonstrated in numerical simulations using a complex multibody vehicle model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes a new integrated vehicle dynamics management for enhancing the yaw stability and wheel slip regulation of the distributed‐drive electric vehicle with active front steering. To cope with the unknown nonlinear tire dynamics with uncertain disturbances in integrated control problem of vehicle dynamics, a neuro‐adaptive predictive control is therefore proposed for multiobjective coordination of constrained systems with unknown nonlinearity. Unknown nonlinearity with unmodeled dynamics is modeled using a random projection neural network via adaptive machine learning, where a new adaptation law is designed in premise of Lyapunov stability. Given the computational efficiency, a neurodynamic method is extended to solve the constrained programming problem with unknown nonlinearity. To test the performance of the proposed control method, simulations were conducted using a validated vehicle model. Simulation results show that the proposed neuro‐adaptive predictive controller outperforms the classical model predictive controller in tracking nominal wheel slip ratio, desired vehicle yaw rate and sideslip angle, showing its significance in vehicle yaw stability enhancement and wheels slip regulation.  相似文献   

9.
Due to complex and nonlinear dynamics of a braking process and complexity in the tire–road interaction, the control of automotive braking systems performance simultaneously with the wheel slip represents a challenging problem. The non-optimal wheel slip level during braking, causing inability to achieve the desired tire–road friction force strongly influences the braking distance. In addition, steerability and maneuverability of the vehicle could be disturbed. In this paper, an active neuro-fuzzy approach has been developed for improving the wheel slip control in the longitudinal direction of the commercial vehicle. The dynamic neural network has been used for prediction and an adaptive control of the brake actuation pressure, during each braking cycle, according to the identified maximum adhesion coefficient between the wheel and road surface. The brake actuation pressure was dynamically adjusted on the level that provides the optimal level of the longitudinal wheel slip vs. the brake pressure selected by driver, the current vehicle speed, the brake interface temperature, vehicle load conditions, and the current value of longitudinal wheel slip. Thus the dynamic neural network model operates (learn, generalize and predict) on-line during each braking cycle, fuzzy logic has been integrated with the neural model as a support to the neural controller control actions in the case when prediction error of the dynamic neural model reached the predefined value. The hybrid control approach presented here provided intelligent dynamic model – based control of the brake actuation pressure in order to keep the longitudinal wheel slip on the optimum level during a braking cycle.  相似文献   

10.
A fuzzy logic controller for an ABS braking system   总被引:11,自引:0,他引:11  
Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy, d) On rough roads, the tire slip ratio varies widely and rapidly due to tire bouncing, and e) The braking system contains transportation delays which limit the control system bandwidth. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal, based on current and past readings of the slip ratio and brake pressure. The controller detects wheel blockage immediately and avoids excessive slipping. The ABS system performance is examined on a quarter vehicle model with nonlinear elastic suspension. The parallelity of the fuzzy logic evaluation process ensures rapid computation of the controller output signal, requiring less time and fewer computation steps than controllers with adaptive identification. The robustness of the braking system is investigated on rough roads and in the presence of large measurement noise. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance on various road types and under rapidly changing road conditions  相似文献   

11.
研究电动汽车制动防抱死功能优化问题,电动汽车在冰雪路面上进行纯再生制动时,驱动轮极有可能抱死,从而造成车辆操纵稳定性下降。为解决上述问题,根据驱动电机在基速以下的调速特性,提出了调压调速型电气ABS模型。以单轮电动汽车模型为研究对象,设计了以车轮滑移率为控制目标的滑动模式防滑控制器。在Matlab/Simulink环境下建立了电气ABS仿真模型,仿真结果表明所建模型具有良好的稳定性;同时表明制动过程由初期的反接制动、为主体的中期再生制动及后期的反接制动构成;且制动精度明显高于传统ABS。研究结果对电动汽车再生制动系统的设计具有一定的参考价值。  相似文献   

12.
The control of an antilock braking system (ABS) is a difficult problem due to its strongly nonlinear and uncertain characteristics. To overcome this difficulty, the integration of gray-system theory and sliding-mode control is proposed in this paper. This way, the prediction capabilities of the former and the robustness of the latter are combined to regulate optimal wheel slip depending on the vehicle forward velocity. The design approach described is novel, considering that a point, rather than a line, is used as the sliding control surface. The control algorithm is derived and subsequently tested on a quarter vehicle model. Encouraged by the simulation results indicating the ability to overcome the stated difficulties with fast convergence, experimental results are carried out on a laboratory setup. The results presented indicate the potential of the approach in handling difficult real-time control problems.   相似文献   

13.
ABS控制并不适用于所有制动工况,由此进一步发展衍生出了电子制动力分配系统(Electric Brake force Distribution,EBD)。针对EBD的功能将EBD的工况分为轻制动、强制动和ABS故障,并分别设计控制策略,实现了一种以车轮加速度和滑移率为门限值的逻辑控制策略。控制策略通过增压、减压和保压调整轮缸制动压力,优先保证制动过程的稳定性,并且在轻制动时注重舒适性,强制动时减缓后轮压力上升速率,ABS故障时EBD代替ABS对后轮进行制动控制。基于车辆动力学仿真软件ve-DYNA的仿真测试和基于ve-DYNA与dSPACE构建的车辆底盘开发平台的硬件在回路测试表明,此EBD控制策略既能防止后轮先于前轮抱死,又能保证制动舒适性和较高的制动效率。  相似文献   

14.
The electric aircraft landing system, as one of the important components of more electric aircraft (MEA) and all electric aircraft (AEA), has been a subject of interest in recent years. An anti-skid braking system (ABS), which is the crucial component of the electric aircraft landing system, has the function of regulating the wheel slip ratio such that the braking process operates in a stable state. In this paper, an approach that combines a nonlinear backstepping dynamic surface control (DSC) and an asymmetric barrier Lyapunov function (ABLF) is presented to not only track the reference slip ratio but also to avoid the slip ratio in the unstable region. We demonstrate that the proposed controller can guarantee the boundedness of the output constraints and the stability of the overall system. Using the ABLF allows one to relax the required initial conditions on the starting values of the wheel slip ratio and subsequently make the wheel slip constraints more flexible for various runway surfaces and runway transitions. The DSC is introduced to eliminate repeated differentiation resulting from ABLF synthesis, which can relax the restrictions on the high-order differentiability for stabilizing functions and the high power of wheel slip tracking error transformation. The proposed controller can avoid the negative effects of disturbance produced by repeated differentiation and can construct a simple controller for wheel slip control. The results of simulations with varying runway surfaces have validated the effectiveness of the proposed control scheme, in which the output constraints on the wheel slip ratio are guaranteed not to be violated and self-locking is avoided.  相似文献   

15.
A direct yaw moment control system (DYC) is designed to improve the handling and stability of a four‐wheel‐drive electric vehicle. The main task of this paper is to use the lateral forces in the process of optimally controlling vehicle stability. This is performed by defining a variable optimum region for the slip ratio of each wheel. A hierarchical structure is selected to design the control system. The higher‐level control system controls the yaw rate of the vehicle based on the fuzzy logic technique. The lower‐level control system, installed in each wheel, maintains the slip ratio of the same wheel within an optimum region using the fuzzy logic technique. This optimum region for each wheel is continuously modified based on the impact of the lateral force on the generated control yaw moment and the friction coefficient of the road. Therefore, an algorithm for estimation of the friction coefficient is proposed. Computer simulations are carried out to investigate the effectiveness of the proposed method. This is accomplished by comparison of the results of control methods with a fixed slip ratio region and the results of the proposed method with a variable slip ratio region in some maneuvers. The robustness of the proposed controller against hard braking and noise contamination, as well as the effect of steering wheel angle amplitude, is verified. The simulation results show that the influence of the proposed method on enhancing vehicle performance is significant. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
汽车防抱死制动系统(ABS)是一种很重要的汽车主动安全技术。并针对路面具体情况,对车辆防抱制动系统的滑移率实时控制进行研究。该文在MATLAB/Simulink仿真环境下,建立车辆动力学模型,实现了对路面状况识别,同时对基于滑移率控制的防抱制动系统的计算机仿真。仿真结果表明,该系统能真实地反映汽车ABS系统的实际工作过程,达到了满意的控制效果。  相似文献   

17.
郑太雄  熊壮  姜新杜 《电子技术应用》2012,38(3):127-129,133
为了解决车辆在低附着弯道路面制动中载荷转移造成的汽车失稳问题,建立7自由度整车模型。通过分析整车弯道制动过程的动态特性,推导出制动力与滑移率的关系,提出了纠正转向中车辆失稳的措施,设计了以滑移率为主的门限值控制方法。仿真验证了该方法能够有效提高制动稳定性。  相似文献   

18.
When four wheel side driven EV travals in steering or changes lanes in high speed, the vehicle is easy to side-slip or flick due to the difference of wheel hub motor and a direct effect of vehicle nonlinear factors on vehicle yaw motion, which would affect vehicle handling and stability seriously. To solve this problem, a joint control strategy, combined with the linear programming algorithm and improved sliding mode algorithm, which combines the exponential reaching law and saturation function was proposed. Firstly, the vehicle dynamics model and the reference model according with the structure and driving characteristics of four wheel side driven EV were set up. Then, introduced the basic method of the improved sliding mode variable structure control and complete the sliding mode variable structure controller design basic on vehicle sideslip angle and yaw velocity.The controller accomplish optimal allocation of vehicle braking force through a linear programming algorithm, according to yaw moment produced by the vehicle motion state. Single lane driving simulation results show that the proposed control strategy can not only control vehicle sideslip angle and yaw velocity well, but also accomplish good controlling of the vehicle yaw moment, so as to significantly improve the handling and stability of vehicle.  相似文献   

19.
The introduction of electric braking via brake‐by‐wire systems in electric vehicles) has reduced the high transportation delays usually involved in conventional friction braking systems. This has facilitated the design of more efficient and advanced control schemes for antilock braking systems (ABSs). However, accurate estimation of the tire‐road friction coefficient, which cannot be measured directly, is required. This paper presents a review of existing estimation methods, focusing on sliding‐mode techniques, followed by the development of a novel friction estimation technique, which is used to design an efficient ABS control system. This is a novel slip‐based estimation method, which accommodates the coupling between the vehicle dynamics, wheel dynamics, and suspension dynamics in a cascaded structure. A higher‐order sliding‐mode observer–based scheme is designed, considering the nonlinear relationship between friction and slip. A first‐order sliding‐mode observer is also designed based on a purely linear relationship. A key feature of the proposed estimation schemes is the inclusion of road slope and the effective radius of the tire as an estimated state. These parameters impact significantly on the accuracy of slip and friction estimation. The performance of the proposed estimation schemes are validated and benchmarked against a Kalman filter (KF) by a series of simulation tests. It is demonstrated that the sliding‐mode observer paradigm is an important tool in developing the next generation ABS systems for electric vehicles.  相似文献   

20.
飞机防滑刹车具有典型的强非线性、强耦合和参数时变等特点, 并且跑道环境的干扰容易对飞机的地面滑跑性能造成不利影响. 本文提出了一种基于非线性干扰观测器的飞机全电防滑刹车系统滑模控制设计方法. 首先, 考虑了实际刹车不确定性干扰条件下的防滑刹车动力学建模问题, 通过对高阶非线性刹车系统进行反馈线性化处理, 简化了基于严格反馈的模型. 其次, 基于对主轮打滑原因的深入分析, 设计了非线性干扰观测器对干扰进行在线估计, 并在控制律设计中引入补偿部分. 通过构造递归结构的快速终端滑模控制器来跟踪实时变化的最佳滑移率并建立稳定性条件, 实现了飞机全电防滑刹车系统的有限时间快速稳定并有效抑制了主轮锁定打滑. 通过在不同跑道状态下进行模拟仿真, 验证了本文提出的飞机防滑刹车控制策略可以有效地提高刹车效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号