首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy conversion alone is inadequate to satisfy long-term energy demands and to gain independence from petroleum-based fuels. It is, therefore, of great importance that all potential fuel alternatives be recognised and examined. Natural gas and bio-liquids may provide such alternatives and their potential has been examined (Nwafor and Rice, WREC 1994;2:841). Fossil fuel combustion is the main culprit in environmental pollution, whilst the impacts of vegetable oil fuel systems are on the whole less adverse and more localised than those of fossil fuels. This paper investigates the possibility of substituting a plant fuel pilot injection for diesel fuel for combustion of natural gas in a diesel engine. The pilot fuels used are rape methyl ester (RME) and neat rapeseed oil. The test results indicate that engine performance on these alternative pilot fuels was satisfactory and compared favourably with the baseline test result on diesel fuel.  相似文献   

2.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

3.
This paper investigates the scope of utilizing biodiesel developed from both through the methyl as well as ethyl alcohol route (methyl and ethyl ester) from Karanja oil as an alternative diesel fuel. The major problem of using neat Karanja oil as a fuel in a compression ignition engine arises due to its very high viscosity. Transesterification with alcohols reduces the viscosity of the oil and other properties have been evaluated to be comparable with those of diesel. In the present work, methyl and ethyl esters of Karanja oil were prepared by transesterification using both methanol and ethanol. The physical and chemical properties of ethyl esters were comparable with that of methyl esters. However, viscosity of ethyl esters was slightly higher than that of methyl esters. Cold flow properties of ethyl esters were better than those of methyl esters. Performance and exhaust emission characteristics of the engine were determined using petrodiesel as the baseline fuel and several blends of diesel and biodiesel as test fuels. Results show that methyl esters produced slightly higher power than ethyl esters. Exhaust emissions of both esters were almost identical. These studies show that both methyl and ethyl esters of Karanja oil can be used as a fuel in compression ignition engine without any engine modification.  相似文献   

4.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

5.
Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NOx), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NOx showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25–50% bio-ester mixed with fossil diesel fuel, NOx emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO2) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed.  相似文献   

6.
燃料甲酯应用研究初探   总被引:3,自引:1,他引:3  
本文介绍了燃料甲酯用于发动机台架试验的情况。燃料甲酯是利用植物油脚料提炼而成,其主要理论性质与0号柴油相近。初步试验结果表明:燃料甲酯用作柴油机代用燃料时,由于其热值稍低而使比油耗相应略高之外,在其它性能方面均与烧柴油时大体上相当,且可与柴油以任意比例掺合。另外从代用燃料角度而言,甲酯与甲醇与良好的互溶性,可掺合作燃料而不需采用特殊措施,此是优于柴油掺甲醇之处。燃料甲酯用于汽油机时可作为甲醇汽油的  相似文献   

7.
Conventional fuels used for supplying internal combustion piston engines include petrols and diesel oils produced from petroleum. These are a non-renewable energy source. The environmental policy of the European Union is geared towards increasing the share of renewable fuels in the overall energy consumption. An alternative fuel originating from a renewable source, which could be used for feeding self-ignition internal combustion engines are the fatty acid methyl esters (FAME) of plant oils. The paper reports selected results of testing a 1.3 MULTIJET SDE 90 PS self-ignition engine with the Common Rail reservoir feed system supplied with mixtures of diesel oil and rape oil fatty acid methyl esters (FAME). Tests were carried out on an engine test bed equipped with an eddy-current brake. The purpose of the tests was to determine the economic–energy and ecological indices of engine operation. The concentrations of exhaust gas gaseous components were measured using a MEXA-1600DEGR analyzer, while the particulate concentrations, with a MEXA-1230PM analyzer. In addition, the variations of working medium pressures in the engine chamber and of fuel pressure upstream the injector were recorded as a function of crankshaft rotation angle using the AVL IndiSmart 612 indication system for this purpose. The physicochemical properties of fuels used in the tests were determined using a fuel analyzer. The obtained testing results made it possible to determine and assess the operation indices of the engine fed with mixtures of diesel oil and rape oil fatty acid methyl esters (FAME) with slightly higher ester contents than the requirements of the currently applicable diesel oil standard.  相似文献   

8.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

9.
Performance of rapeseed oil blends in a diesel engine   总被引:5,自引:0,他引:5  
The concept that 100% vegetable oil cannot be used safely in a direct-injection diesel engine for long periods of time has been stressed by many researchers. Short-term engine tests indicate good potential for vegetable oil fuels. Long-term endurance tests may show serious problems in injector coking, ring sticking, gum formation, and thickening of lubricating oil. These problems are related to the high viscosity and nonvolatility of vegetable oils, which cause inadequate fuel atomization and incomplete combustion. Fuel blending is one method of reducing viscosity. This paper presents the results of an engine test on three fuel blends. Test runs were also made on neat rapeseed oil and diesel fuel as bases for comparison. There were no significant problems with engine operation using these alternative fuels. The test results showed increases in brake thermal efficiency as the amount of rapeseed oil in the blends increases. Reduction of power-output was also noted with increased amount of rapeseed oil in the blends. Test results include data on performance and gaseous emissions. Crankcase oil analyses showed a reduction in viscosity. Friction power was noted to increase as the amount of diesel fuel in the blend increases.  相似文献   

10.
The study endeavor to utilize esters of Balanites aegyptiaca (L.) Del(Balanites) as a fuel for diesel engine. Ester developed from balanites oil by the transesterification process is investigated for its properties and the engine performance. A single stage alkali-catalyzed esterification process by using 1.25% KOH, methyl alcohol 8:1 molar ratio with respect to balanites oil, gives the maximum ester yield of 95%. The performance and emission characteristics of the engine are analyzed using balanites oil methyl esters and diesel as fuel. The viscosity of balanites oil is found to be decreased by 89% after esterification, and the calorific value of balanites oil methyl esters is nearly 94% of the diesel fuel. The engine performance with balanites oil methyl ester as a fuel resembles to that of conventional diesel fuel, while the exhaust gas emissions are reduced with the use of balanites oil methyl esters.  相似文献   

11.
The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.  相似文献   

12.
Due to the increasing demand for fossil fuels and environmental threat, a number of renewable sources of energy have been studied worldwide. In the present investigation a high linolenic linseed oil methyl ester has been investigated in a constant speed, DI diesel engine with varied fuel injection pressures (200, 220 and 240 bar). The main objective of this study is to investigate the effect of injection pressures on performance, emissions and combustion characteristics of the engine. The test results show that the optimum fuel injection pressure is 240 bar with linseed methyl ester. At this optimized pressure the thermal efficiency is similar to diesel and a reduction in carbon monoxide, unburned hydrocarbon and smoke emissions with an increase in the oxides of nitrogen was noticed compared to diesel. The combustion analysis shows that, the ignition delay is lower at higher injection pressures compared to diesel and the peak pressure is also higher at full load. The combustion duration was almost same at all the injection pressures. It is concluded that linseed methyl ester at 240 bar injection pressure is more efficient than 200 and 220 bar, except for nitrogen oxides emission.  相似文献   

13.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

14.
In this study, hybrid fuels consisting of rapeseed oil/diesel blend, 1% aqueous ethanol and a surfactant (oleic acid/1-butanol mixture) were prepared and tested as a fuel in a direct injection (DI) diesel engine. The main fuel properties such as the density, viscosity and lower heating value (LHV) of these fuels were measured, and the engine performance, combustion and exhaust emissions were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the hybrid fuels were decreased and close to that of diesel fuel with the increase of ethanol volume fraction up to 30%. The start of combustion was later than that of diesel fuel and the peak cylinder pressure, peak pressure rise rate and peak heat release rate were higher than those of diesel fuel. The brake specific fuel consumption (BSFC) of hybrid fuels was increased with the volume fraction of ethanol and higher than that of diesel. The brake specific energy consumption (BSEC) was almost identical for all test fuels. The smoke emissions were lower than those for diesel fuel at high engine loads, the NOx emissions were almost similar to those of diesel fuel, but CO and HC emissions were higher, especially at low engine loads.  相似文献   

15.
The interest in energy from biomass, in particular for transportation, is related to the need to differentiate the energy sources to improve environment and protect human health. Objective of this study is a comparative evaluation of performance and exhaust emissions of an automotive diesel engine fuelled by mixtures of rapeseed and soybean methyl ester with reference to mineral diesel fuel. The spatial and temporal jet evolutions have been characterized injecting the fuel in a quiescent vessel by a standing alone common rail apparatus at diesel-like gas density conditions. The injection strategies have been chosen as representative of different engine working conditions for several speeds and loads, injecting the fuel in a non-evaporating high-density vessel. Fuel injection rate measurements, spatial and temporal fuel distribution have been carried out processing jet images captured by a CCD camera. Engine tests have been performed on a 4-cylinder DI Diesel engine for automotive applications equipped with a common rail 7-hole nozzle electro-injector system. Engine performance, gas emissions and smoke have been measured at the engine speeds of 1500 and 2500 RPM for different loads. Two different fuel blends, RME50 and SME50, have been tested comparing their performance and emissions with the diesel ones.  相似文献   

16.
In this study, usage of methyl ester obtained from waste frying oil (WFO) is examined as an experimental material. A reactor was designed and installed for production of methyl ester from this kind of oil. Physical and chemical properties of methyl ester were determined in the laboratory. The methyl ester was tested in a diesel engine with turbocharged, four cylinders and direct injection. Gathered results were compared with No. 2 diesel fuel. Engine tests results obtained with the aim of comparison from the measures of torque, power; specific fuel consumptions are nearly the same. In addition, amount of emission such as CO, CO2, NOx, and smoke darkness of waste frying oils are less than No. 2 diesel fuel.  相似文献   

17.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

18.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

19.
In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine warmed up beforehand to avoid the effect of cold starts and several tests a day. Regulated emissions of NOX, CO, HC and CO2 were measured for each fuel. Unburned Hydrocarbon Speciation and formaldehyde were also measured in order to determine the maximum incremental reactivity (MIR) of the gaseous emissions. Pollutants were measured without the diesel oxidation catalyst (DOC) to gather data about raw emissions. When biodiesel was used, increases in regulated and unregulated emissions were observed and also significant increases in engine fuel consumption. The use of Fischer Tropsch fuel, however, caused lower regulated and unregulated emissions and fuel consumption than diesel.  相似文献   

20.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号