首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently presented an application of the phage display technique enabling cloning of DNA encoding ligand-binding domain(s) of prokaryotic receptors directly from chromosomal DNA. Here we show that the use of a gene VIII-based, instead of a gene III-based, phagemid vector system results in a much more efficient selection for phage displaying a binding capacity. A phagemid library was made by insertion of randomly fragmented chromosomal DNA from Staphylococcus aureus strain 8325-4 into gene VIII in the constructed phagemid vector pG8H6. The library, which in theory should express parts of all proteins encoded by the bacterial genome, was affinity panned against the ligands IgG, fibronectin and fibrinogen, respectively. After a second panning against the same ligand, a significant increase in the number of eluted phagemid particles was observed, and 75%-100% of randomly picked clones contained inserts derived from genes encoding proteins with a binding affinity for the respective ligand. The results show that this technique can be used for cloning prokaryotic receptor genes without any prior knowledge of the receptor, thus eliminating the need for probes in the identification of receptor genes.  相似文献   

2.
Homologous recombination in Saccharomyces cerevisiae depends critically on RAD52 function. In vitro, Rad52 protein preferentially binds single-stranded DNA (ssDNA), mediates annealing of complementary ssDNA, and stimulates Rad51 protein-mediated DNA strand exchange. Replication protein A (RPA) is a ssDNA-binding protein that is also crucial to the recombination process. Herein we report that Rad52 protein effects the annealing of RPA-ssDNA complexes, complexes that are otherwise unable to anneal. The ability of Rad52 protein to promote annealing depends on both the type of ssDNA substrate and ssDNA binding protein. RPA allows, but slows, Rad52 protein-mediated annealing of oligonucleotides. In contrast, RPA is almost essential for annealing of longer plasmid-sized DNA but has little effect on the annealing of poly(dT) and poly(dA), which are relatively long DNA molecules free of secondary structure. These results suggest that one role of RPA in Rad52 protein-mediated annealing is the elimination of DNA secondary structure. However, neither Escherichia coli ssDNA binding protein nor human RPA can substitute in this reaction, indicating that RPA has a second role in this process, a role that requires specific RPA-Rad52 protein interactions. This idea is confirmed by the finding that RPA, which is complexed with nonhomologous ssDNA, inhibits annealing but the human RPA-ssDNA complex does not. Finally, we present a model for the early steps of the repair of double-strand DNA breaks in yeast.  相似文献   

3.
Expression vectors for surface display and production of single-chain (Fv) antibodies (scAb) have been constructed based on the phagemid pSEX, which expresses DNA encoding a scAb fused to the gene III product of filamentous phage [Breitling et al., Gene 104 (1991) 147-153]. A smaller version of this phagemid, pSEX20, was made by removing an unnecessary cat. To produce a vector for the surface display of other proteins and peptides, the scAb of pSEX20 was substituted by a polycloning site (MCS) to give pSEX40. For the presentation of Ab on the surface of Escherichia coli, phagemid pAP10 was derived from pSEX20 by substituting gene III with a gene encoding the peptidoglycan-associated lipoprotein (PAL). Vectors for producing scAb that can be purified by antibody and metal affinity chromatography were constructed by substituting gene III in the vector pSEX20 with DNA encoding a peptide with a C-terminal epitope recognised by a monoclonal antibody (phagemid pOPE40) or with five C-terminal histidines (pOPE 90).  相似文献   

4.
5.
Human replication protein A (RPA; also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. While the role of RPA in replication has been well studied, its function in repair is less clear, although it is known to be involved in the early stages of the repair process. We found that RPA interacts with xeroderma pigmentosum group A complementing protein (XPAC), a protein that specifically recognizes UV-damaged DNA. We examined the effect of this XPAC-RPA interaction on in vitro simian virus 40 (SV40) DNA replication catalyzed by the monopolymerase system. XPAC inhibited SV40 DNA replication in vitro, and this inhibition was reversed by the addition of RPA but not by the addition of DNA polymerase alpha-primase complex, SV40 large tumor antigen, or topoisomerase I. This inhibition did not result from an interaction between XPAC and single-stranded DNA (ssDNA), or from competition between RPA and XPAC for DNA binding, because XPAC does not show any ssDNA binding activity and, in fact, stimulates RPA's ssDNA binding activity. Furthermore, XPAC inhibited DNA polymerase alpha activity in the presence of RPA but not in RPA's absence. These results suggest that the inhibitory effect of XPAC on DNA replication probably occurs through its interaction with RPA.  相似文献   

6.
In Escherichia coli, chi is a recombination hotspot that stimulates RecBCD-dependent exchange at and to one side of itself. chi activity is highest at chi and decreases with distance from chi. The decrease in chi activity may be a simple property of the physical distance over which chi can stimulate recombination. Alternatively, the decay in chi activity with distance may reflect the high likelihood that chi-stimulated recombination occurs in a single chi-proximal act, to the exclusion of additional chi-stimulated exchanges more distal to chi. To test the models, we determined if chi activity decreases as a function of physical distance (i.e., DNA base pairs) or genetic distance (homologous DNA base pairs). Our results indicate that chi activity decays as a function of genetic distance. In addition, we found that the sbcB gene product (exonuclease I, a 3'-->5' ssDNA exonuclease) modulates the distance over which chi can act. In contrast, the recJ gene product (a 5'-->3' ssDNA exonuclease) does not alter the decay of chi activity.  相似文献   

7.
We studied the ability of single-stranded DNA (ssDNA) to participate in targeted recombination in mammalian cells. A 5' end-deleted adenine phosphoribosyltransferase (aprt) gene was subcloned into M13 vector, and the resulting ssDNA and its double-stranded DNA (dsDNA) were transfected to APRT-Chinese hamster ovary cells with a deleted aprt gene. APRT+ recombinants with the ssDNA was obtained at a frequency of 3 x 10(-7) per survivor, which was almost equal to that with the double-stranded equivalent. Analysis of the genome in recombinant clones produced by ssDNA revealed that 12 of 14 clones resulted from correction of the deletion in the aprt locus. On the other hand, the locus of the remaining 2 was not corrected; instead, the 5' deletion of the vector was corrected by end extension, followed by integration into random sites of the genome. To exclude the possibility that input ssDNA was converted into its duplex form before participating in a recombination reaction, we compared the frequency of extrachromosomal recombination between noncomplementary ssDNAs, and between one ssDNA and one dsDNA, of two phage vectors. The frequency with the ssDNAs was 0.4 x 10(-5), being 10-fold lower than that observed with the ssDNA and the dsDNA, suggesting that as little as 10% of the transfected ssDNA was converted into duplex forms before the recombination event, hence 90% remained unchanged as single-stranded molecules. Nevertheless, the above finding that ssDNA was as efficient as dsDNA in targeted recombination suggests that ssDNA itself is able to participate directly in targeted recombination reactions in mammalian cells.  相似文献   

8.
9.
Human deoxyribonuclease I (DNase I), an enzyme recently approved for treatment of cystic fibrosis (CF), has been engineered to create two classes of mutants: actin-resistant variants, which still catalyze DNA hydrolysis but are no longer inhibited by globular actin (G-actin) and active site variants, which no longer catalyze DNA hydrolysis but still bind G-actin. Actin-resistant variants with the least affinity for actin, as measured by an actin binding ELISA and actin inhibition of [33P] DNA hydrolysis, resulted from the introduction of charged, aliphatic, or aromatic residues at Ala-114 or charged residues on the central hydrophobic actin binding interface at Tyr-65 or Val-67. In CF sputum, the actin-resistant variants D53R, Y65A, Y65R, or V67K were 10-to 50-fold more potent than wild type in reducing viscoelasticity as determined in sputum compaction assays. The reduced viscoelasticity correlated with reduced DNA length as measured by pulsed-field gel electrophoresis. In contrast, the active site variants H252A or H134A had no effect on altering either viscoelasticity or DNA length in CF sputum. The data from both the active site and actin-resistant variants demonstrate that the reduction of viscoelasticity by DNase I results from DNA hydrolysis and not from depolymerization of filamentous actin (F-actin). The increased potency of the actin-resistant variants indicates that G-actin is a significant inhibitor of DNase I in CF sputum. These results further suggest that actin-resistant DNase I variants may have improved efficacy in CF patients.  相似文献   

10.
RecA promotes homologous pairing of single-stranded DNA (ssDNA) with double-stranded DNA (dsDNA). This reaction occurs inefficiently if the ssDNA substrate is preincubated with Escherichia coli ssDNA-binding protein (SSB). However, RecO and RecR can act together as accessory factors for RecA to overcome this inhibition by SSB (Umezu, K., Chi, N.-W., and Kolodner, R. D. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 3875-3879). To elucidate the mechanism that underlies this process, we examined protein-protein interactions between RecA, RecF, RecO, RecR, and SSB, and characterized the structure and activity of the ssDNA complexes formed with different combinations of these proteins. We obtained the following results. (i) RecO physically interacts with both RecR and SSB. The interaction between RecO and SSB is stronger than the RecO-RecR interaction. (ii) RecO and RecR do not remove SSB from SSB.ssDNA complexes, but instead bind to these complexes. The resulting RecO.RecR.SSB.ssDNA complexes were more active in RecA-mediated joint molecule formation than were SSB.ssDNA complexes. (iii) RecA can nucleate on the RecO.RecR.SSB.ssDNA complexes more efficiently than on SSB.ssDNA complexes. (iv) When RecA presynaptic filaments were formed in the presence of SSB, RecO, and RecR, the protein-DNA complexes obtained contained 70% of the amount of RecA required to saturate ssDNA. These complexes, however, can mediate joint molecule formation and strand exchange as efficiently as presynaptic filaments which are fully saturated with RecA. Based on these results, we propose dual roles for RecO and RecR in joint molecule formation. First, RecO and RecR bind to SSB.ssDNA complexes and modify their structure to allow RecA to nucleate on them efficiently. Second, RecO and RecR are retained in RecA presynaptic filaments and play a role in the subsequent homologous pairing process promoted by RecA.  相似文献   

11.
Research into the use of new genetic markers is difficult and costly, but it is necessary for more accurate criminal individualization and paternity testing as well as for analysis of genetic diseases. Recently, we discovered that human ribonuclease (RNase), deoxyribonuclease I (DNase I) and deoxyribonuclease II (DNase II) are characteristic markers showing genetic polymorphism and useful for forensic investigation. DNase I is particularly well suited to practical use, since it shows a well-balanced gene frequency, a high concentration in several body fluids (blood, sweat, urine, breast milk and semen) and tissues (pancreas, liver and kidney), stability against severe conditions (exposure of test samples to high temperature, high humidity and long-term storage), and easy and accurate detectability.  相似文献   

12.
Foreign DNA has been shown to impinge on immune cell function by an as yet unidentified mechanism. We and others have demonstrated that single-stranded (ss) DNA containing the motif CpG flanked by two 5' purines and two 3' pyrimidines are mitogenic for B cells and activate macrophages to release tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6 or IL-12. Because of these pro-inflammatory responses we investigated if ssDNA would serve as a potential vaccine adjuvant. Here we show that CpG-containing oligonucleotides represent a powerful adjuvant for both humoral and cellular immune responses. When ssDNA was incorporated into inocula, specific antibody titers of the IgG2 isotype were enhanced by greater than 100-fold. Primary cytotoxic T lymphocyte responses generated to either unprocessed protein antigen or major histocompatibility complex class I-restricted peptide were exceedingly strong. Evidence is also provided that oligomers directly influenced T cell receptor-triggered T cell proliferation. Thus ssDNA oligomers may serve as inexpensive and safe vaccine adjuvants and, in addition, differential effects due to sequence may allow for directed responses.  相似文献   

13.
The presynaptic phase of homologous recombination requires the formation of a filament of single-stranded DNA (ssDNA) coated with a recombinase enzyme. In bacteriophage T4, at least three proteins are required for the assembly of this presynaptic filament. In addition to the T4 recombinase, uvsX protein, the T4 ssDNA binding protein (gp32), and the uvsY recombination accessory protein are also required. Here we report on a detailed analysis of a tripartite filament containing ssDNA bound by stoichiometric quantities of both uvsY and gp32, which appears to be an important intermediate in the assembly of the T4 presynaptic filament. We demonstrate that uvsY and gp32 simultaneously co-occupy the ssDNA in a noncompetitive fashion. In addition, we show that protein-protein interactions between uvsY and gp32 are not required for the assembly of this ternary complex and do not affect the affinity of uvsY for the ssDNA lattice. Finally, we demonstrate that the interaction of gp32 with the ssDNA is destabilized within this complex, in a manner which is independent of gp32-uvsY interactions. The data suggest that the uvsY protein acts to remodel the gp32-ssDNA complex via uvsY-ssDNA interactions. The implications of these findings for the mechanism of presynapsis in the T4 recombination system are discussed.  相似文献   

14.
Bacteriophage T7 DNA helicase requires two noncomplementary single-stranded DNA (ssDNA) tails next to a double-stranded DNA (dsDNA) region to initiate DNA unwinding. The interactions of the helicase with the DNA were investigated using a series of forked DNAs. Our results show that the helicase interacts asymmetrically with the two tails of the forked DNA. When the helicase was preassembled on the forked DNA before the start of unwinding, a DNA with 15-nucleotide (nt) 3'-tail and 35-nt 5'-tail was unwound with optimal rates close to 60 base pairs/s at 18 degrees C. When the helicase was not preassembled on the DNA, a >65-nt long 5'-tail was required for maximal unwinding rates of 12 base pairs/s. We show that the helicase interacts specifically with the ssDNA region and maintains contact with both ssDNA strands during DNA unwinding, since conversion of the two ssDNA tails to dsDNA structures greatly inhibited unwinding, and the helicase was unable to unwind past a nick in the dsDNA region. These studies have provided new insights into the mechanism of DNA unwinding. We propose an exclusion model of DNA unwinding in which T7 helicase hexamer interacts mainly with the ssDNA strands during DNA unwinding, encircling the 5'-strand and excluding the 3'-strand from the hole.  相似文献   

15.
The C-terminal domain of p53 may bind single-stranded (ss) DNA ends and catalyze renaturation of ss complementary DNA molecules, suggesting a possible direct role for p53 in DNA repair (Proc. Natl. Acad. Sci. USA, 92, 9455-9459, 1995). We found that DU-86, a duocarmycin derivative which alkylates DNA, bound ssDNA and enhanced the DNA binding activity of the p53 C-terminus. DU-86 weakened p53-mediated catalysis of complementary ssDNA renaturation. p53 C-terminus catalyzed DNA strand transfer toward annealing between intact ssDNAs and toward eliminating DU-86-damaged ssDNA from duplex formation. These results suggest that p53, via the C-terminal domain, may play a direct role in DNA repair by preferential recognization and elimination of damaged DNA.  相似文献   

16.
The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.  相似文献   

17.
The structure of the complex of the Escherichia coli primary replicative helicase DnaB protein with single-stranded (ss) DNA and replication fork substrates has been examined using the fluorescence energy transfer method. In these experiments, we used the DnaB protein variant, R14C, which has arginine 14 replaced by cysteine in the small 12-kDa domain of the protein using site-directed mutagenesis. The cysteine residues have been modified with a fluorescent marker which serves as a donor or an acceptor to another fluorescence label placed in different locations on the DNA substrates. Using the multiple fluorescence donor-acceptor approach, we provide evidence that, in the complex with the enzyme, ssDNA passes through the inner channel of the DnaB hexamer. This is the first evidence of the existence of such a structure of a hexameric helicase-ssDNA complex in solution. In the stationary complex with the 5' arm of the replication fork, without ATP hydrolysis, the distance between the 5' end of the arm and the 12-kDa domains of the hexamer (R = 47 A) is the same as in the complex with the isolated ssDNA oligomer (R = 47 A) having the same length as the arm of the fork. These data indicate that both ssDNA and the 5' arm of the fork bind in the same manner to the DNA binding site. Moreover, in the complex with the helicase, the length of the ssDNA is similar to the length of the ssDNA strand in the double-stranded DNA conformation. In the stationary complex, the helicase does not invade the duplex part of the fork beyond the first 2-3 base pairs. This result corroborates the quantitative thermodynamic data which showed that the duplex part of the fork does not contribute to the free energy of binding of the enzyme to the fork. Implications of these results for the mechanism of a hexameric helicase binding to DNA are discussed.  相似文献   

18.
Two site-directed mutants of Escherichia coli DNA helicase II (UvrD) were constructed to examine the functional significance of motif VI in a superfamily I helicase. Threonine 604 and arginine 605, representing two of the most highly conserved residues in motif VI, were replaced with alanine, generating the mutant alleles uvrD-T604A and uvrD-R605A. Genetic complementation studies indicated that UvrD-T604A, but not UvrD-R605A, functioned in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. Both mutant enzymes were purified and single-stranded DNA (ssDNA)-stimulated ATP hydrolysis, duplex DNA unwinding, and ssDNA binding were studied in the steady-state and compared to wild-type UvrD. UvrD-T604A exhibited a serious defect in ssDNA binding in the absence of nucleotide. However, in the presence of a non-hydrolyzable ATP analog, DNA binding was only slightly compromised. Limited proteolysis experiments suggested that UvrD-T604A had a "looser" conformation and could not undergo conformational changes normally associated with ATP binding/hydrolysis and DNA binding. UvrD-R605A, on the other hand, exhibited nearly normal DNA binding but had a severe defect in ATP hydrolysis (kcat=0.063 s-1 compared to 162 s-1 for UvrD). UvrD-T604A exhibited a much less severe decrease in ATPase activity (kcat=8.8 s-1). The Km for ATP for both mutants was not significantly changed. The results suggest that residues within motif VI of helicase II are essential for multiple biochemical properties associated with the enzyme and that motif VI is potentially involved in conformational changes related to the coupling of ATPase and DNA binding activities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号