首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Renewable Energy》2007,32(15):2461-2478
The temperature at a certain depth in the ground remains nearly constant throughout the year and the ground capacitance is regarded as a passive means of heating and cooling of buildings. To exploit effectively the heat capacity of the ground, a heat-exchanger system has to be constructed. This is usually an array of buried pipes running along the length of a building, a nearby field or buried vertically into the ground. A circulating medium (water or air) is used in summer to extract heat from the hot environment of the building and dump it to the ground and vice versa in winter. A heat pump may also be coupled to the ground heat exchanger to increase its efficiency. In the literature, several calculation models are found for ground heat exchangers. The main input data are the geometrical characteristics of the system, the thermal characteristics of the ground, the thermal characteristics of the pipe and the undisturbed ground temperature during the operation of the system. During the first stages of the geothermal systems study, one-dimensional models were devised which were replaced by two-dimensional models during the 1990s and three-dimensional systems during recent years. The present models are further refined and can accommodate for any type of grid geometry that may give greater detail of the temperature variation around the pipes and in the ground. Monitoring systems have been set up to test various prototype constructions with satisfactory results.  相似文献   

2.
Earth-to-air heat exchangers can be used for energy conservation in cooling of agricultural greenhouses. A parametric analysis performed for a typical glass greenhouse illustrates the effect of pipe length, pipe diameter, and air velocity inside the pipes on the performance of the system. Measured data of indoor air temperature collected from a 1000 m2 fiberglass covered greenhouse, equipped with four buried pipes, are compared with calculated data and are found to be in very good agreement.  相似文献   

3.
A one-dimensional transient analytical model is proposed to estimate the performance of earth-to-air heat exchangers, installed at different depths, used for building cooling/heating. Two independent space coordinates are considered, one in the longitudinal direction of the buried pipe and the other through the soil, in the vertical direction. With appropriate simplifications, analytical treatment is proposed to predict the temperature fields of the fluid in the pipe and of the soil in the proximity of the buried pipe, taking into account thermal perturbation of the upper free surface and the possible phase change (condensation) in the buried pipes. Moreover, the agreement with some experimental data available in the literature is very satisfactory.  相似文献   

4.
The study investigated the performance of a solar chimney, which is integrated into a south facade of a one-story building, as well as the effect on the heating and cooling loads of the building by using a CFD simulation and an analytical model. A C programming code was developed for the calculation of the heating and cooling loads by the heat balance method. The analytical equations of a solar chimney were incorporated into the heat balance calculation. The results showed that the fan shaft power requirement was reduced by about 50% in annual total due to the natural ventilation. It was also found that the solar chimney was beneficial to reduce the heating load by about 20% during the heating season. The annual thermal load mitigation was estimated as 12% by taking the increase of the cooling load into account.  相似文献   

5.
In this article, we use the concept of artificial neural network and goal oriented design to propose a computer design tool that can help the designer to evaluate any aspect of earth-to-air heat exchanger and behavior of the final configuration. The present study focuses mostly on those aspects related to the passive heating or cooling performance of the building. Two models have been developed for this purpose, namely deterministic and intelligent. The deterministic model is developed by analyzing simultaneously coupled heat and mass transfer in ground whereas the intelligent model is a development of data driven artificial neural network model. Six variables influencing the thermal performance of the earth-to-air heat exchangers which were taken into account are length, humidity, ambient air temperature, ground surface temperature, ground temperature at burial depth and air mass flow rate. Furthermore, a sensitivity analysis was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the burial depth. The model was validated against experimental data sets. Moreover, the developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. The Intelligent model predicts earth-to-air heat exchanger outlet air temperature with an accuracy of ±2.6%, whereas, the deterministic model shows an accuracy of ±5.3%.  相似文献   

6.
An air-to-earth heat exchanger (ATEHE) consists of pipes buried in soil. We have evaluated the technical and economic performance of an ATEHE coupled to the system for heating or cooling of a building that uses 100% fresh air as heating or cooling medium during winter and summer. The soil is divided into elementary layers. The problem solved, is non stationary; however, steady state-energy equations are used for soil layers in each time step. It is found that the use of the ATEHE covers a portion of the daily building needs for space heating or cooling. The cost of the ATEHE energy is lower for summer than for winter.  相似文献   

7.
The performance optimization of an endoreversible air refrigerator with variable‐temperature heat reservoirs is carried out by taking the cooling load density, i.e. the ratio of cooling load density to the maximum specific volume in the cycle, as the optimization objective in this paper. The analytical relations of cooling load, cooling load density and coefficient of performance are derived with the heat resistance losses in the hot‐ and cold‐side heat exchangers. The maximum cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, the optimum distribution of heat conductance of the hot‐ and cold‐side heat exchangers for the fixed total heat exchanger inventory, and the heat capacity rate matching between the working fluid and the heat reservoirs. The influences of some design parameters, including the heat capacitance rate of the working fluid, the inlet temperature ratio of heat reservoirs and the total heat exchanger inventory on the maximum cooling load density, the optimum heat conductance distribution, the optimum pressure ratio and the heat capacity rate matching between the working fluid and the heat reservoirs are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander and the hot‐ and cold‐side heat exchangers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Ten years' hourly measurements of air and ground temperature values at various depths below bare and short grass soil at Dublin Airport have been used in order to investigate the impact of different ground surface boundary conditions on the efficiency of a single and a multiple parallel earth-to-air heat exchanger system. The heating potential of both these systems buried under bare soil has been assessed and compared with the heating potential of the same systems buried under short-grass-covered soil. The results of this comparison revealed that soil surface cover might be a significant controllable factor for the improvement of the performance of earth-to-air heat exchangers. The heating system consists of a single pipe or multiple parallel pipes laid horizontally, through which ambient or indoor air is propelled and heated by the bulk temperature of the natural ground. The dynamic thermal performance of these systems during the winter period and their operational limits have been calculated using an accurate numerical model. Finally, a sensitivity analysis was performed in order to investigate the effect of the main design parameters, such as pipe length, pipe radius, air velocity inside the tube and the depth of the buried pipe below the earth's surface, on the system heating capacity. Cumulative frequency distributions of the air temperature at the pipe's exit have been developed as a function of the main input parameters.  相似文献   

9.
For the purpose of decreasing the peak electricity, balancing the on and off-peak electric load and utilizing the renewable geothermal energy, a new integrated system with cooling storage in soil and a ground-coupled heat pump is presented. In the integrated system, the moist soil acts as the material for cooling storage, and pipes serve as the cooling storage devices and geothermal heat exchangers simultaneously. In the cooling season, the cooling energy is stored in soil during the off-peak period and is extracted for space cooling during the on-peak period. While in other seasons, the system works as a ground-coupled heat pump for heating or cooling. A mathematical model which describes the charging and discharging processes of the integrated system has been developed and validated, and a computer code has been implemented to simulate the operational performance of cooling charging and discharging in soil. A parametric study indicates that the charging inlet temperature, tube diameter, moisture content of soil and pipe distance are important factors in determining the cyclic performance of the integrated system.  相似文献   

10.
Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers with heat pipes have become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectronics, energy and other industrial sectors.Utilisation of a heat pipe fin stack in the drying cycle of domestic appliances for heat recovery may lead to a significant energy saving in the domestic sector. However, the design of the heat pipe heat exchanger will meet a number of challenges. This paper presents a design method by using CFD simulation of the dehumidification process with heat pipe heat exchangers. The strategies of simulating the process with heat pipes are presented. The calculated results show that the method can be further used to optimise the design of the heat pipe fin stack. The study suggests that CFD modelling is able to predict thermal performance of the dehumidification solution with heat pipe heat exchangers.  相似文献   

11.
A new, integrated method to calculate the energy contribution of night ventilation techniques to the cooling load of a building is presented in this paper. The method is based on the principle of “Balance Point Temperature” and permits the calculation of the energy required to cool a building to acceptable comfort conditions when night ventilation techniques are used. It also permits the calculation of the energy contribution of night ventilated buildings compared to conventional air conditioned buildings. The proposed method is successfully validated with data from an extended and detailed simulation procedure using the TRNSYS simulation programme to calculate dynamically the thermal performance of buildings using night ventilation techniques. It is found that the method is of sufficient accuracy and can be used during the predesign as well as the design phase of a building to access the performance of night ventilated buildings.  相似文献   

12.
In terms of reducing the environmental pollution caused by effluent water from typical condensers and the water dependency of small modular reactors, indirect dry air‐cooled condensers (IDACs) are being considered an ultimate heat sink. While the performance of air‐cooled heat exchangers has been investigated thoroughly for decades, evaluations of the condenser performance rely primarily on empirical data. Thus, a method for precisely determining the performance of the IDAC under various environmental and thermal‐hydraulic conditions has not yet been understood. The objective of this study is to experimentally investigate the critical parameter that initiates the deterioration of the condenser performance by varying the cooling duty and water velocity. The investigation is also extended to a parametric study of the air‐cooling conditions using a best‐estimate thermal hydraulic analysis code called multi‐dimensional analysis of reactor safety (MARS‐KS) to suggest a method for designing an IDAC system. Results showed that, for a given cooling duty and water velocity, the condenser exhibited an insufficient performance above a certain cooling water temperature. The temperature was defined as the pressure transition temperature (PTT) that initiates the increase in pressure inside the condenser. The calculation results of MARS‐KS were analysed based on the PTT and was used to suggest methods for designing an appropriate IDAC for the cooling duty and environmental conditions of given target site.  相似文献   

13.
This paper presents the thermal performance, in the heating and cooling of a building, of a double hollow concrete slab, one of whose faces is exposed to solar radiation and ambient air while the other is in contact with room air at constant temperature. A blackwened network of pipes is laid on the top surface and glazed sutiably. the flow rate of water / air through pipes is kept constant. It is seen that there is a time difference of 10-12 h between the maximum/ minimum of the thermal flux extering the room and the solair temperature for any flow rate. the heat flux inside the room is reduced appreciably for higher infiltration when there is no water flow to heat the building. the effect of a water film on the performance of the wall/roof has also been discussed and found to be more effective for the reduction of the heat flux coming into the building.  相似文献   

14.
土壤蓄冷与耦合热泵集成系统中土壤蓄冷的模拟研究   总被引:5,自引:2,他引:5  
结合土壤耦合热泵技术及冻土蓄冷技术的优点,提出一种全新的热泵空调系统形式一土壤蓄冷与土壤耦合热泵集成系统。该系统将土壤耦合热泵系统(GCHP)的地下埋管换热器与蓄冷装置合二为一,在电力低谷期将冷量贮存到土壤中,以满足高峰电力期空调负荷的需要。在能量平衡的基础上建立了土壤蓄冷释冷过程的数学模型,并采用固相增量法模型对其进行了模拟计算,分析其应用的技术可行性,为土壤蓄冷与土壤耦合热泵集成系统的应用提供理论支持。  相似文献   

15.
Low depth geothermal heat exchangers can be efficiently used as a heat sink for building energy produced during summer. If annual average ambient temperatures are low enough, direct cooling of a building is possible. Alternatively the heat exchangers can replace cooling towers in combination with active cooling systems. In the current work, the performance of vertical and horizontal geothermal heat exchangers implemented in two office building climatisation projects is evaluated.A main result of the performance analysis is that the ground coupled heat exchangers have good coefficients of performance ranging from 13 to 20 as average annual ratios of cold produced to electricity used. Best performance is reached, if the ground cooling system is used to cool down high temperature ambient air. The maximum heat dissipation per meter of ground heat exchanger measured was lower than planned and varied between 8 W m?1 for the low depth horizontal heat exchangers up to 25 W m?1 for the vertical heat exchangers.The experimental results were used to validate a numerical simulation model, which was then used to study the influence of soil parameters and inlet temperatures to the ground heat exchangers. The power dissipation varies by ±30% depending on the soil conductivity. The heat conductivity of vertical tube filling material influences performance by another ±30% for different materials. Depending on the inlet temperature level to the ground heat exchanger, the dissipated power increases from 2 W m?1 for direct cooling applications at 20 °C up to 52 W m?1 for cooling tower substitutions at 40 °C. This directly influences the cooling costs, which vary between 0.12 and 2.8€ kW h?1.As a result of the work, planning and operation recommendations for the optimal choice of ground coupled heat exchangers for office building cooling can be given.  相似文献   

16.
When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.  相似文献   

17.
In the present analysis the thermal performance of a parallel earth air-pipe system has been evaluated in terms of annual heating and cooling potential. The influence of the pipes on each other's thermal performance has been considered. The effect of seasonal variation of environmental parameters (ambient temperature, solar radiation, relative humidity, earth temperature etc.) has been considered. The results are obtained for the hot-dry climate of Jodhpur and the composite climate of Delhi. From the various possible earth surface treatments to increase the effectiveness of earth storage systems for air conditioning purposes, the results are presented for wet-shaded earth surface conditions, the most effective earth surface treatment for the climate considered. Thermal performance of the parallel air-pipe system is evaluated for the two cases. In the first case, inlet air temperature to the pipes is taken to be the hourly mean of the ambient air temperature of the average day of each month, and, in the second case, the inlet air temperature is taken to be equal to that of a conditioned room whose set-point temperature varies from month to month.  相似文献   

18.
The first Romanian passive office building has been constructed by the AMVIC Company in Bragadiru, 10 km south of Bucharest. The overheating rate and the cooling load are higher for a passive building than for a standard building. The internal heat sources and the maximum allowed indoor temperature do markedly affect the cooling load. A time-dependent model shows that cooling is necessary during April-September. The ground heat exchanger is an effective system for cooling-down the fresh air inlet temperature. Also, the Venetian blinds prove to be efficient in diminishing the building heat input. However, these two systems are not able to ensure a controlled thermal comfort during summer. This suggests that an active cooling system should be used when passive buildings are implemented in the Romanian climate. The standard configuration of the passive buildings ventilation system (which is usually designed for heating purposes), must be changed in case cooling becomes necessary during the warm season. The results are of interest for other countries in Southeastern Europe.  相似文献   

19.
A district space heating and cooling system using geothermal energy from bearing piles was designed in Shanghai and will be installed in two years before 2010. This paper describes the pile-foundation heat exchangers applied in an energy pile system for an actual architectural complex in Shanghai, 30% of whose cooling/heating load was designed to be provided by a ground-source heat pump (GSHP) system using the energy piles. In situ performance tests of heat transfer are carried out to figure out the most efficient type of energy pile and to specify the design of energy pile system. Numerical investigation is also performed to confirm the test results and to demonstrate the medium temperature variations along the pipes. The averaged heat resistance and heat injection rate of different types of energy piles are calculated from the test and numerical results. The effect of pile type, medium flow rate and inlet temperature on thermal performance is separately discussed. From the viewpoint of energy efficiency and adjustability, the W-shaped underground heat exchanger with moderate medium flow rate is finally adopted for the energy pile system.  相似文献   

20.
建立了考虑外部有限速率传热过程和热源间热漏的不可逆半导体固态热离子制冷器模型,基于非平衡热力学和有限时间热力学理论导出了热离子制冷器的制冷率和制冷系数的表达式;对比分析了不可逆热离子制冷器与可逆热离子制冷器的发射电流密度特性、电极温度特性以及制冷系数特性;研究了不可逆系统的制冷率与制冷系数最优性能,得到了制冷率和制冷系数的最优运行区间;通过数值计算,详细讨论了外部传热以及内部导热、热源间热漏损失、热源温度、外加电压、半导体材料势垒等设计参数对热离子装置性能的影响。在总传热面积一定的条件下,进一步优化了高、低温侧换热器的面积分配以获得最佳的制冷率和制冷系数特性。结果表明,由于存在内部和外部的不可逆性,热离子装置的发射电流密度及制冷系数都会明显降低;不可逆半导体固态热离子制冷器的制冷率与制冷系数特性呈扭叶型;合理地选外加电压、势垒等参数,可以使制冷器设计于最大制冷率或最大制冷系数的状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号