首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
CMP后清洗技术的研究进展   总被引:3,自引:0,他引:3  
雷红 《半导体技术》2008,33(5):369-373
化学机械抛光(CMP)技术是目前广泛采用的几乎唯一的高精度全局平面化技术,抛光后表面的清洗质量直接关系到CMP技术水平的高低.介绍了各种机械、物理及化学清洗方法与工艺技术优缺点,指出了清洗荆、清洗方式是CMP后清洗技术中的关键要素.综述了CMP后清洗技术的发展现状,分析了CMP后清洗存在的问题,并对其发展趋势进行了展望.  相似文献   

2.
随着计算机硬盘容量的增大、转速的提高、磁头与盘片间距离的降低,对硬盘基板材料选择及改善基板表面平整度提出了更高的要求.综述了硬盘基板材料的发展状况,指出了基板化学机械抛光(CMP)中亟待解决的问题和解决的途径,分析研究了影响硬盘基板CMP技术的因素及如何控制基板抛光后的表面质量.  相似文献   

3.
在NiP基片的化学机械抛光中,针对现有酸性抛光液存在的易腐蚀、易污染和以Al2O3为磨料造成易划伤表面的质量问题,尝试使用SiO2水溶胶作为抛光磨料,通过加入非离子表面活性剂和螯合剂等,配制成一种碱性环境下的硬盘基片抛光液。通过化学机械抛光试验,发现这种碱性SiO2抛光液在硬盘NiP基片抛光中具有250nm/min的抛光速率,抛光后的表面粗糙度为0.8nm,表面光滑,几乎观察不到划痕及其他微观缺陷。  相似文献   

4.
目前,大多数计算机硬盘采用镍磷敷镀的铝合金作为磁盘盘片,并采用化学机械抛光(CMP)技术作为盘片最终的精抛光.通过对镍磷基板的化学性质分析,讨论了其CMP机理,指出在整个反应过程中,化学反应速率是慢过程,它决定了最终的CMP速率,如何使络合反应迅速向右进行将成为CMP的关键.通过分析浆料在硬盘基板CMP中的重要性,指出浆料的化学成份是化学作用的关键.通过分析氧化剂、pH值、活性剂及螯合剂的影响作用,研制了新型碱性浆料,其中磨料为硬度较小粒径40 nm的SiO2水溶胶,氧化剂为H2O2,FA/O活性荆与螯合剂,并首次选用有机碱作为pH值调节剂.利用配制的抛光液通过CMP实验确定氧化剂含量为15 ml/,L,pH值为11,磨料浓度为20%时,获得的速率可达550 nm/min以上,粗糙度降至1.1 nm.  相似文献   

5.
计算机硬盘微晶玻璃基板抛光研究   总被引:1,自引:0,他引:1  
计算机硬盘微晶玻璃基板的微观结构性能与化学成分都不连续,显微硬度非常高(900 kg/mm2~1 000 kg/mm2),难以获得亚纳米级光滑表面.讨论了微晶玻璃基板结构性能、抛光机理、抛光工艺条件等因素对抛光效果的影响.结果表明,硬盘微晶玻璃基板的结晶相颗粒大小、玻璃相与结晶相的比例都会影响抛光表面质量;化学机械抛光引起玻璃相的优先抛除,该作用机理不适宜于微晶玻璃基板抛光.工艺条件中压力对微晶玻璃基板的表面粗糙度影响最大,抛光中需要维持合适的压力.选取合适的抛光条件,最终获得了粗糙度为0.208 nm(AFM:5 μm×5 μm)的光滑表面.  相似文献   

6.
7.
利用总积分散射仪研究不同清洗技术下的基片表面粗糙度   总被引:1,自引:1,他引:0  
为了探讨不同清洗工艺对基片表面微观粗糙度的影响,利用总积分散射(TIS)仪分别对不同条件下超声清洗的K9玻璃基片,End-hall离子源清洗的K9玻璃基片和Kaufmann离子源清洗的熔石英基片的表面均方根(RMS)粗糙度进行了系统表征.结果表明,K9玻璃基片经不同条件下的超声波清洗后,由于清洗过程中表面受到损伤,其RMS粗糙度均有所增加;而对于End-hall离子源和Kaufmann离子源清洗的基片,其表面RMS粗糙度的变化受清洗过程中离子束流、清洗时间和离子束能量等实验参量的影响较为明显,选择合适的实验参量可以降低基片表面粗糙度.  相似文献   

8.
当集成电路制造工艺缩小到14 nm及以下,阻挡层抛光清洗后表面缺陷严重影响芯片成品率。针对新型碱性阻挡层抛光液,与线上抛光液对比,通过检测抛光清洗后的晶圆表面缺陷,研究了不同阻挡层抛光液对CMP后清洗效果的影响。研究结果表明:当新型碱性阻挡层抛光液中不含盐酸胍时,抛光清洗后的晶圆表面存在大量划伤,盐酸胍的加入可同时提高TEOS和Cu的去除速率,且显著降低表面划伤数量;使用单一成分清洗液对不同阻挡层抛光液CMP后的晶圆清洗,新型阻挡层抛光液抛光清洗后的晶圆表面无任何污染颗粒,利于CMP后清洗,而线上抛光液的晶圆表面存在大量有机残留物和氧化物颗粒,需复配清洗液清洗;相比较线上阻挡层抛光液+复配清洗液工艺,使用新型碱性阻挡层抛光液+单一成分清洗液工艺产生的Cu/Ta界面腐蚀小,抛光清洗后的晶圆表面无明显的宽线条边缘缝隙和细线条表面塌陷的现象。  相似文献   

9.
本文叙述了660MW中间再热机组强制循环汽包炉的炉本体采用盐酸清洗、采用磷酸和多聚磷酸盐进行漂洗钝化的清洗工艺方法。其特点在于:为减缓金属腐蚀,必需严格控制清洗工艺配方。通过缓蚀剂对比小型试验探索出:在酸洗配方和水冲洗过程中,添加适量的异抗坏血酸钠还原剂可以抑制三价铁离子对金属的腐蚀,并可避免因水冲洗时间过长而产生二次锈蚀。该工艺实际应用后效果良好,金属腐蚀速率及腐蚀总量均显著小于《火力发电厂锅炉化学清洗导则》(DL/T794—2001)所规定的标准。该工艺还探索出:在酸洗和酸洗后的冲洗水中添加异抗坏血酸钠后,能够有效抑制三价铁离子的腐蚀危害,并减少二次锈蚀的产生。  相似文献   

10.
介绍了合金阴极箔经化学腐蚀后清洗铝箔表面残留氯离子的几种方法 ,比较了各种方法的优缺点 ,提出了清洗不同比容阴极箔的适用方法  相似文献   

11.
碱性抛光液对硬盘基板抛光中表面状况的影响   总被引:1,自引:0,他引:1  
阐述了化学机械抛光(CMP)技术在硬盘基板加工中发挥的重要作用,介绍了SiO2碱性抛光液的化学机械抛光机理以及抛光液在化学机械抛光中发挥的重要作用。使用河北工业大学研制的SiO2碱性抛光液对硬盘基板表面抛光,分析研究了抛光液中的浓度、表面活性剂以及去除量对抛光后硬盘基板表面状况的影响机理。总结了硬盘基板表面粗糙度随抛光液中的浓度、表面活性剂及去除量的变化规律以及抛光液的这些参数如何影响到硬盘基板的表面状况。在总结和分析这些规律的基础上,对抛光结果进行了检测。经检测得出,改善抛光后的硬盘基板表面质量(Ra=0.3926nm,Rrms=0.4953nm)取得了显著效果。  相似文献   

12.
ULSI关键工艺技术——纳米级化学机械抛光   总被引:2,自引:0,他引:2  
IC器件尺寸的纳米化,要求高的光刻曝光分辨率,在采用短波长和大数值孔径曝光系统提高分辨率的同时导致了焦深变浅,进而对晶片表面的平坦化要求越来越高。在比较了IC工艺中的四种平坦化技术基础上,重点综述了唯一可以实现全局平坦化的化学机械抛光(CMP)方法的发展、应用及展望。  相似文献   

13.
化学机械抛光浆料研究进展   总被引:3,自引:1,他引:3  
化学机械抛光(CMP)作为目前唯一可以实现全面平坦化的工艺技术,已被越来越广泛地应用到集成电路芯片、计算机硬磁盘和光学玻璃等表面的超精密抛光.介绍了CMP技术的发展背景,以及目前国内外抛光浆料的研究现状,并根据CMP浆料磨料的性质,将其分为单磨料、混合磨料和复合磨料浆料,对每一种浆料做了总体描述.详细介绍了近年来发展的复合磨料制备技术及其在CMP中的应用,并展望了CMP技术的发展前景以及新型抛光浆料的开发方向.  相似文献   

14.
主要对分立器件硅衬底化学机械平坦化(CMP)进行了研究。首先通过正交实验方法研究活性剂、螯合剂、磨料浓度和有机碱对硅材料去除速率的影响,得出活性剂体积分数对去除速率的影响最大,并且研究出去除速率最快的抛光液的最优配比,去除速率可以达1 410nm/min。同时平坦化后的硅衬底具有良好的表面状态:表面粗糙度仅为0.469nm,表面总厚度变化小于工业标准指标5μm。在考虑工艺影响的情况下,硅衬底制造双极型晶体管的成品率达到90%以上,满足工业成品率要求。  相似文献   

15.
针对硬盘NiP/Al基板粗抛光,采用SiO2作为抛光磨料的碱性抛光液,在不同压力、转速、pH值、磨料浓度和活性剂体积浓度下,对硬盘基板粗抛光的去除速率和表面粗糙度的变化规律进行研究,用原子力显微镜观察抛光表面的微观形貌。最后对5个关键参数进行了优化。结果表明:当压力为0.10 MPa,转速为80 rad/min,pH值为11.2,磨料与去离子水体积比为1∶0.5,表面活性剂体积浓度为9 mL/L时,硬盘基板的去除速率为27 mg/min,粗抛后表面粗糙度为0.281 nm,获得了高的去除速率和较好的表面粗糙度,这样会大大降低精抛的时间,有利于抛光效率的提高。  相似文献   

16.
针对不合腐蚀抑制剂苯并三氮唑(BTA)的碱性铜粗抛液,通过对3英寸(1英寸=2.54 cm)铜片上的动态抛光速率和静态腐蚀速率的研究来模拟评估氧化剂对晶圆表面平坦化的影响.在12英寸铜镀膜片和TM1图形片上分别研究氧化剂体积分数对表面平坦化的影响.实验结果表明:动态抛光速率和静态腐蚀速率均随着氧化剂体积分数的增加先逐渐增大,达到最大值,然后下降,趋于平缓.片内非均匀性和剩余高低差均随H2O2体积分数的增加,先呈下降趋势,后缓慢上升.当氧化剂体积分数为3%时,动态去除速率(vRR)为398.988 nm/min,静态腐蚀速率vER为6.834 nm/min,vRR/vER比值最大,片内非均匀性最小为3.82%,台阶高低差最小为104.6 nm/min,此时晶圆片有较好的平坦化效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号