首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu C  Hu L  Mu Q  Cao Z  Xuan L 《Applied optics》2011,50(1):82-89
We present an open-loop adaptive optics (AO) system based on two liquid-crystal spatial light modulators (LCSLMs) that profit from high precision wavefront generation and good repeatability. A wide optical bandwidth of 300 nm is designed for the system, and a new open-loop optical layout is invented to conveniently switch between the open and closed loop. The corresponding control algorithm is introduced with a loop frequency (the reciprocal of the total time delay of a correction loop) of 103 Hz. The system was mounted onto a 2.16 m telescope for vertical atmospheric turbulence correction. The full width at half-maximum of the image of the star α Boo reached 0.636 arc sec after the open-loop correction, while it was 2.12 arc sec before the correction. The result indicates that the open-loop AO system based on LCSLMs potentially has the ability to be used for general astronomical applications.  相似文献   

2.
Mu Q  Cao Z  Li D  Hu L  Xuan L 《Applied optics》2008,47(9):1298-1301
A collimator with a long focal length and large aperture is a very important apparatus for testing large-aperture optical systems. But it suffers from internal air turbulence, which may limit its performance and reduce the testing accuracy. To overcome this problem, an adaptive optics system is introduced to compensate for the turbulence. This system includes a liquid crystal on silicon device as a wavefront corrector and a Shack-Hartmann wavefront sensor. After correction, we can get a plane wavefront with rms of about 0.017 lambda (lambda=0.6328 microm) emitted out of a larger than 500 mm diameter aperture. The whole system reaches diffraction-limited resolution.  相似文献   

3.
A Kellerer 《Applied optics》2012,51(23):5743-5751
First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80?arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.  相似文献   

4.
High-resolution retinal imaging with micro adaptive optics system   总被引:3,自引:0,他引:3  
Niu S  Shen J  Liang C  Zhang Y  Li B 《Applied optics》2011,50(22):4365-4375
Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann-Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6?LP/mm, and the human eye wavefront aberration of 0.728λ (λ=785?nm) can be corrected to 0.081λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.  相似文献   

5.
根据光波在介质中的传播规律,首先详细分析了全光路像差校正自适应光学系统的工作原理,然后对常规方法标定共模波前传感器后的系统校正残余误差作了分析,并从校正残余误差和操作的简易程度两个方面分析了常规方法标定共模波前传感器存在的缺点,最后针对全光路像差校正自适应光学系统的特点,提出了两种新的共模波前传感器标定方法,详细推导了两种方法标定共模波前传感器后全系统的校正残余误差.结果显示,两种方法标定共模波前传感器后,其校正残余误差只与常规方法标定共模波前传感器后系统的校正残余误差中的一种误差有关.  相似文献   

6.
The imaging properties of optical microscopes are often compromised by aberrations that reduce image resolution and contrast. Adaptive optics technology has been employed in various systems to correct these aberrations and restore performance. This has required various departures from the traditional adaptive optics schemes that are used in astronomy. This review discusses the sources of aberrations, their effects and their correction with adaptive optics, particularly in confocal and two-photon microscopes. Different methods of wavefront sensing, indirect aberration measurement and aberration correction devices are discussed. Applications of adaptive optics in the related areas of optical data storage, optical tweezers and micro/nanofabrication are also reviewed.  相似文献   

7.
A 32 x 32 microelectricalmechanical systems mirror is controlled in a closed-loop adaptive optics test bed with a spatially filtered wavefront sensor (WFS), Fourier transform wavefront reconstruction, and calibration of references with a high-precision interferometer. When correcting the inherent aberration of the mirror, 0.7 nm rms phase error in the controllable band is achieved. When correcting an etched phase plate with atmospheric statistics, a dark hole 10(3) deeper than the uncontrollable phase is produced in the phase power spectral density. Compensation of the mirror's influence function is done with a Fourier filter, which results in improved loop convergence. Use of the spatial filter is shown to reduce the gain variability of the WFS in a quadcell configuration.  相似文献   

8.
The effect of increased high-order wavefront aberrations on image resolution was investigated, and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a model retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lorentzian curve fitted to a laser line image. Wavefront aberrations were significantly reduced with AO, resulting in improvement of image resolution. In the model eye, image resolution was degraded with increased high-order wavefront aberrations (horizontal coma and spherical) and improved with AO correction of wavefront error in the presence of increased light scatter. The findings of the current study suggest that AO imaging systems can potentially improve image resolution in aging eyes with increased aberrations and scatter.  相似文献   

9.
Abstract

The wavefront sensor is used in adaptive optics to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. Different from the Shack–Hartmann sensor that has been widely used with point sources, the plenoptic camera wavefront sensor has been proposed as an alternative wavefront sensor adequate for extended objects in recent years. In this paper, the plenoptic camera wavefront sensing with extended sources is discussed systematically. Simulations are performed to investigate the wavefront measurement error and the closed-loop performance of the plenoptic sensor. The results show that there are an optimal lenslet size and an optimal number of pixels to make the best performance. The RMS of the resulting corrected wavefront in closed-loop adaptive optics system is less than 108 nm (0.2λ) when D/r0 ≤ 10 and the magnitude M ≤ 5. Our investigation indicates that the plenoptic sensor is efficient to operate on extended sources in the closed-loop adaptive optics system.  相似文献   

10.
This paper presents results from an adaptive optics experiment in which an adaptive control loop augments a classical adaptive optics feedback loop. Closed-loop wavefront errors measured by a self-referencing interferometer are fed back to the control loops, which drive a membrane deformable mirror to correct the wavefront. The paper introduces new frequency-weighted deformable mirror modes used as the control channels and new wavefront sensor modes for analyzing the performance of the control loops. The corrected laser beam also is imaged by a diagnostic target camera. The experimental results show reduced closed-loop wavefront errors and correspondingly sharper diagnostic target images produced by the adaptive control loop as compared with the classical AO loop.  相似文献   

11.
A model of a non-modulated pyramid wavefront sensor (P-WFS) based on Fourier optics has been presented. Linearizations of the model represented as Jacobian matrices are used to improve the P-WFS phase estimates. It has been shown in simulations that a linear approximation of the P-WFS is sufficient in closed-loop adaptive optics. Also a method to compute model-based synthetic P-WFS command matrices is shown, and its performance is compared to the conventional calibration. It was observed that in poor visibility the new calibration is better than the conventional.  相似文献   

12.
The standard adaptive optics system can be viewed as a sampled-data feedback system with a continuous-time disturbance (the incident wavefront from the observed object) and discrete-time measurement noise. A common measure of the performance of adaptive optics systems is the time average of the pupil variance of the residual wavefront. This performance can be related to that of a discrete-time system obtained by lifting the incident and residual wavefronts. The corresponding discrete-time model is derived, and the computation of the adaptive optics system residual variance is based on that model. The predicted variance of a single mode of an adaptive optics system is shown to be the same as that obtained via simulation (as expected). The discrete-time prediction is also shown to be superior to a continuous-time approximation of the adaptive optics system.  相似文献   

13.
Cao Z  Mu Q  Hu L  Liu Y  Peng Z  Lu X  Xuan L 《Applied optics》2008,47(8):1020-1024
A twisted nematic liquid crystal wavefront corrector (TN-LCWFC) partially modulates the incident polarized light. A blazed grating may be preapplied on the TN-LCWFC to filter the unmodulated light for the purpose of stable adaptive correction. However, for broadband light, the dispersion of the blazed grating affects the image resolution. An achromatic method is presented to eliminate the dispersion of the blazed grating. Based on a prism model, we analyze the achromatic principle. An achromatic system with a conjugated blazed grating and an achromatic lens is given to eliminate the dispersion. An experiment was done with two transmitted blazed gratings so as to validate our method. Finally, a liquid crystal spatial light modulator was used as a conjugated grating to eliminate the dispersion of the blazed grating in an adaptive optics system. The results showed that the dispersion was partially compensated, and a resolvable image was achieved with a 600-700 nm wave band.  相似文献   

14.
动态波前相位的高分辨率测量   总被引:4,自引:0,他引:4  
姜凌涛  陈笠 《光电工程》1998,25(6):20-23
动态波前相位信息测量是大气光学,气动光学和激光技术等领域的重要实验手段。提出了一种具有高的时间和空间分辨率以及长的测量持续时间的动态波前相位测量方法。应用Hartmann-Shack波前传感器获得高空间分辨率的相位信息,采用高帧频CCD摄象机获得高时间分辨率图象数据。  相似文献   

15.
Multi-object adaptive optics (MOAO) is a solution developed to perform a correction by adaptive optics (AO) in a science large field of view. As in many wide-field AO schemes, a tomographic reconstruction of the turbulence volume is required in order to compute the MOAO corrections to be applied in the dedicated directions of the observed very faint targets. The specificity of MOAO is the open-loop control of the deformable mirrors by a number of wavefront sensors (WFSs) that are coupled to bright guide stars in different directions. MOAO calls for new procedures both for the cross registration of all the channels and for the computation of the tomographic reconstructor. We propose a new approach, called "Learn and Apply (L&A)", that allows us to retrieve the tomographic reconstructor using the on-sky wavefront measurements from an MOAO instrument. This method is also used to calibrate the registrations between the off-axis wavefront sensors and the deformable mirrors placed in the science optical paths. We propose a procedure linking the WFSs in the different directions and measuring directly on-sky the required covariance matrices needed for the reconstructor. We present the theoretical expressions of the turbulence spatial covariance of wavefront slopes allowing one to derive any turbulent covariance matrix between two wavefront sensors. Finally, we discuss the convergence issue on the measured covariance matrices, we propose the fitting of the data based on the theoretical slope covariance using a reduced number of turbulence parameters, and we present the computation of a fully modeled reconstructor.  相似文献   

16.
Baranec C  Dekany R 《Applied optics》2008,47(28):5155-5162
We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.  相似文献   

17.
用自适应光学系统来校正由大气湍流等产生的波前畸变,能够得到很好的效果.通过对自适应光学系统的工作原理进行研究,提出了一种基于MEMS技术的微小型自适应光学系统校正波前畸变的方法,将MEMS技术应用于变形反射镜,并构建了具体的实验平台,用来校正一种人为产生的波前畸变,且阐述了具体的实验过程.实验结果表明,基于MEMS技术的自适应光学系统能够很好地闭环校正波前畸变,且其体积小、质量轻、校正性能稳定,为自适应光学技术在星载相机上的应用提供了依据.  相似文献   

18.
Fernández EJ  Artal P 《Applied optics》2007,46(28):6971-6977
An artificial dynamic eye model is proposed. The prototype enabled us to introduce temporal variations in defocus and spherical aberration, resembling those typically found in the human eye. The eye model consisted of a meniscus lens together with a modal liquid crystal lens with controllable focus. A diffuser placed at a fixed distance from the lenses acted as the artificial retina. Developed software allowed the user to precisely control the dynamic generation of aberrations. In addition, different refractive errors could simultaneously be emulated by varying the distance between the components of the model. The artificial eye was first used as a dynamic generator of both spherical aberration and defocus, imitating the behavior of a real eye. The artificial eye was implemented in an adaptive optics system designed for the human eye. The system incorporated an electrostatic deformable mirror and a Hartmann-Shack wavefront sensor. Results with and without real time closed-loop aberration correction were obtained. The use of the dynamic artificial eye could be quite useful for testing and evaluating adaptive optics instruments for ophthalmic applications.  相似文献   

19.
Tubbs R 《Applied optics》2005,44(29):6253-6257
Numerical simulations of atmospheric turbulence and adaptive optics (AO) wavefront correction are performed to investigate the time scale for fringe motion in optical interferometers with spatial filters. These simulations focus especially on partial AO correction, where only a finite number of Zernike modes are compensated. The fringe motion is found to depend strongly on both the aperture diameter and the level of AO correction used. In all the simulations the coherence time scale for interference fringes is found to decrease dramatically when the Strehl ratio provided by the AO correction is < or = 30%. For AO systems that give perfect compensation of a limited number of Zernike modes, the aperture size that gives the optimum signal for fringe phase tracking is calculated. For AO systems that provide noisy compensation of Zernike modes (but are perfectly piston neutral), the noise properties of the AO system determine the coherence time scale of the fringes when the Strehl ratio is < or = 30%.  相似文献   

20.
The error of generalized aliasing associated with the limited sampling of the atmospheric turbulence volume due to the finite number of wavefront sensing directions in wide-field-of-view adaptive optics is formally defined. Following a modal approach, we extend the direct problem formulation of star-oriented multi-conjugate adaptive optics (MCAO) to model and quantify this error analytically. We show that the turbulence estimation with the least-squares reconstructor is subject to strong generalized aliasing, in particular affecting the badly seen modes, whereas with the minimum-mean-square-error reconstructor the estimation is little affected. Finally, we show that the application of modal gain optimization techniques in closed-loop MCAO systems is jeopardized by the generalized aliasing error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号