首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper (Cu) coating was deposited by cold spraying, and the electrical resistivity of the coating in both directions parallel and perpendicular to the coating surface was measured to investigate the anisotropy of the coating. Annealing treatment was applied to the coating to examine its effect on the microstructure and properties of the cold-sprayed Cu coating. The examination of coating microstructure evidently revealed that the coating was constituted by the flattened particles, and the interfaces were clearly observed between the deposited particles. The anisotropy in microstructure and electrical resistivity was present in cold-sprayed Cu coating. The electrical resistivity of the as-sprayed coating was higher than that of Cu bulk. Moreover, the electrical resistivity along the direction parallel to the coating surface was lower than that along the perpendicular direction. It was found that annealing treatment led to the enhancement of particle interface bonding and evident recry stallization of the elongated grains and remarkable grain growth as well. The annealed coating presented equiaxed grain structures similar to the annealed Cu bulk with particle interfaces almost disappearing under certain annealing conditions. The coalescence of voids or pores in the coating was clearly observed at high annealing temperatures. Moreover, the annealed coating yielded an electrical resistivity and microhardness comparable to Cu bulk. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

2.
冷喷涂过程的低温特性决定了其适合制备氧化敏感性的 Ti 及 Ti 合金涂层,由于 Ti 金属的难变形性,使得很难得到高质量的冷喷涂涂层。 国内外学者对冷喷涂制备 Ti 及 Ti 合金涂层开展了初步研究工作。 文中在大量文献分析的基础上对冷喷涂制备 Ti 及 Ti 合金涂层组织调控手段进行了分类总结。 目前,对冷喷钛及钛合金涂层的调控手段主要集中在喷涂参数、粉末状态、基体状态和喷嘴等 4 个方面。 除此之外,一些新兴的技术如原位喷丸辅助技术、温喷涂技术也被证明是一种有效的增强难变形粒子变形的技术。 未来对冷喷涂 Ti 及 Ti 合金涂层的研究既要注重冷喷涂工艺本身,又要加强与其他加工技术的融合。  相似文献   

3.
基于冷喷涂的多孔钛与钛合金的制备与表征   总被引:2,自引:0,他引:2  
基于冷喷涂技术的优点,结合喷涂后热处理开发了一种新的多孔钛与钛合金制备工艺.研究了热处理对所制备多孔钛与钛合金块材的组织与结合强度的影响.结果表明,所得多孔块材的气孔率与粉末本身及喷涂条件有关,气孔率在10%~50%之间变化.热处理态的气孔率代表了冷喷涂制备块材的实际气孔率.所得多孔块材喷涂态的结合强度在10~30 MPa之间变化.热处理后粒子间接触界面通过扩散达到冶金结合,多孔块材的结合强度均明显增加(超过55 MPa).  相似文献   

4.
304 stainless steel coatings had been deposited on carbon-steel substrate by cold spray technique, vacuum annealing treatment was applied to the coatings with different temperatures, and the influence of annealing treatment on the microstructure and electrochemical behavior of the coatings in 3.5% NaCl were analyzed. The results indicated that, the cold sprayed coating was constituted by the flattened particles, and the interfaces were clearly observed between the deposited particles. It was also found that...  相似文献   

5.
Cold spraying enables to produce metallic coatings with low porosity level and low oxygen content. Several material properties such as electrical conductivity and corrosion resistance rely on these properties. Aim of this study was to characterize microstructural properties of cold sprayed copper, nickel, and nickel-30%copper coatings. Microstructures, denseness, and deformation of particles were investigated. SEM analysis and corrosion tests were done to get information of through-porosity. Open porosity has an important role on protectiveness of anodically protective coatings, such coating materials like copper and nickel. In this study, cold-sprayed Cu coating was fully dense. However, cold-sprayed Ni and Ni-30%Cu coatings seemed to be microstructurally dense but some porosity in some areas of the coatings especially in some parts of particle boundaries was noticed after corrosion tests. Furthermore, effect of annealing to microstructure and corrosion test behavior was studied. Cold sprayed Ni coating became denser during heat treatment.  相似文献   

6.
选择了三种球磨时间制备的Ni/Ti机械合金化粉末,通过冷喷涂制备了不同结构的Ni/Ti涂层.涂层组织结构采用扫描电镜(SEM)和X射线衍射(XRD)进行了表征分析.试验发现,随着粉末球磨时间的增加,热处理后的冷喷涂合金转变为金属间化合物的温度下降,涂层的组成相由Ni3Ti,B2-NiTi和Ti2Ni逐渐变成Ni3Ti和Ti2Ni;随着热处理温度的增加,涂层组织中不同成分的金属间化合物的相对量会发生一定改变.结果表明,热处理过程中形成的B2-NiTi金属间化合物在冷却时表现出较高的稳定性.  相似文献   

7.
Cold spray has the potential to restore damaged aerospace components made from titanium alloy, Ti6Al4V at low temperature (200-400 °C). Traverse scanning speed during deposition is one of the key factors that affect the quality of the Ti6Al4V coatings as it influences the thermal build-up and coating thickness per pass. As there are fewer reported studies on this, this work investigated the effects of different traverse scanning speeds (100, 300 and 500 mm/s) of cold spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings. The cross-sectional analysis showed coating porosities reduces with slower traverse speed, from 3.2 to 0.5%. In addition, the microhardness of the coatings increased from about 361-385 HV due to strain hardening. However, the adhesion strength of the coatings to the substrates significantly decreased with reduced traverse speed from about 60 MPa (glue failure) at 500 mm/s to 2.5 MPa (interface failure) at 100 mm/s. Therefore, this study revealed that the control of heat build-up and thickness per pass during the cold spray deposition of the Ti6Al4V coatings is crucial to attain the desirable properties of the coatings.  相似文献   

8.
Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.  相似文献   

9.
It is difficult to deposit dense intermetallic compound coatings by cold spraying directly using the compound feedstock powders due to their intrinsic low-temperature brittleness. A method to prepare intermetallic compound coatings in-situ employing cold spraying was developed using a metastable alloy powder assisted with post-heat treatment. In this study, a nanostructured Fe/Al alloy powder was prepared by ball-milling process. The cold-sprayed Fe/Al alloy coating was evolved in-situ to intermetallic compound coating through a post-heat treatment. The microstructural evolution of the Fe-40Al powder during mechanical alloying and the effect of the post-heat treatment on the microstructure of the cold-sprayed Fe(Al) coating were characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy (TEM), and x-ray diffraction analysis. The results showed that the milled Fe-40Al powder exhibits lamellar microstructure. The microstructure of the as-sprayed Fe(Al) coating depends significantly on that of the as-milled powder. The heat-treatment temperature significantly influences the in-situ evolution of the intermetallic compound. The heat treatment at a temperature of 500 °C results in the complete transformation of Fe(Al) solid solution to FeAl intermetallic compound. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

10.
The purpose of this paper is to examine whether cold spraying is capable of manufacturing high-quality ferrous-based amorphous alloy coatings by comparing the performance of a cold-sprayed with a plasma-sprayed Fe25Cr20Mo1Si amorphous coating on a 40Cr substrate. The hardness, microstructure, wear resistance, and corrosion resistance of the two coatings were determined with potentiodynamic polarization curves, neutral salt spray tests, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction and their performance differences were examined. The results show that the cold-sprayed Fe25Cr20Mo1Si coating has an amorphous content of 97.63%, which is slightly higher than that for the raw powder (97.24%) and plasma-sprayed coating (96.55%). The coating hardness ranges from 720 HV to 1,030 HV, which is higher than plasma-sprayed coating (590–610 HV) and decreases the wear rate to about 2/3. The average porosity is 2.97 ± 0.59%, which is lower than that of the plasma-sprayed coating (4.95 ± 0.13%). The cold-sprayed Fe25Cr20Mo1Si coating can pass the 3,000 hr neutral salt spraying test, while the plasma-sprayed coating fails within 120 hr. The corrosion current in 3.5% NaCl solution reached to its stable value about 1.66 A/cm2, which is about 1/4 of the plasma-sprayed coating (5.81 A/cm2). Upon analyzing the properties and the anticorrosion performance, it was found that there are no through-thickness pores in the cold-sprayed coating that impact its long-term anticorrosion performance. Cold spraying can be used to fabricate ferrous-based amorphous coatings instead of traditional thermal spraying technologies to obtain high-quality ferrous-based amorphous coatings.  相似文献   

11.
本文使用低压冷喷涂技术,分别在45#钢基体与45#钢加镀铬层基体上制备铜锌涂层试样。通过静态浸泡与铜加速醋酸盐雾腐蚀试验(CASS)对涂层和涂层加镀铬层试样的腐蚀性能进行研究;采用SEM、XPS对腐蚀前后涂层与镀铬层的微观形貌与元素进行表征。结果表明:静态腐蚀过程中,铜锌涂层的耐腐蚀性优于铜锌涂层加镀铬层;CASS实验中,随着原始粉体中锌含量的增加,涂层试样与涂层加镀铬层试样的耐腐蚀性能提高,当铜锌比为6:4时,对应涂层试样、涂层加镀铬层试样与纯镀铬层的耐腐性能达到六级。铜锌涂层在腐蚀液中由于电化学腐蚀及氯化作用,导致铜锌均发生了腐蚀,其腐蚀产物主要为Zn(OH)2、Cu2O与CuCl2。铜锌涂层加镀铬层试样在腐蚀过程中,锌的腐蚀在一定成上可以起到减缓镀铬层腐蚀的作用,这种减缓的作用与镀铬层上析出的铜膜共同保护镀铬层,增强其耐腐蚀性能。  相似文献   

12.
Cold spraying enables high quality Cu coatings to be deposited for applications where high electrical and/or thermal conductivity is needed. Fully dense Cu coatings can provide an effective corrosion barrier in specific environments. The structure of cold-sprayed Cu coatings is characterized by high deformation which imparts excellent properties. Coating properties depend on powder, the cold spray process and post treatments. First of all, powder characteristics have a strong influence on the formation of pure coatings. Secondly, cold spraying provides dense, adherent, and conductive coatings by using HPCS and LPCS. Furthermore, an addition of Al2O3 particles to the Cu powder in LPCS process significantly improves coating properties. Also, heat treatments improve electrical conductivity. This study summarizes optimal characteristics of Cu powder optimized for cold spraying, achieving high coating quality and compares properties of HPCS Cu, LPCS Cu and Cu+Al2O3 coatings prepared from the same batch of OFHC Cu powder.  相似文献   

13.
It is well established that cold spray coatings exhibit substantially lower elastic modulus as compared to bulk material of the same composition. It has also been observed that the heat treatment of the cold spray coatings results in a significant increase in the elastic modulus of the coating. To check whether the presence of inter-splat cracks is responsible for the above behavior, a wide variety of metallic materials (Cu, Ag, Zn, Nb, Ta, Ti, and 316L stainless steels) in the powder form have been deposited on a mild steel substrate using the cold spray technique. These coatings in both as-coated and heat-treated conditions have been characterized for their porosity, extent of inter-splat boundary cracking, hardness, and elastic modulus. Results indicate that the elastic modulus of the coatings are substantially lower than the bulk value and also that the heat treatment of the coatings consistently increase their elastic modulus values. It has been shown that the reduction in elastic modulus of cold spray coatings can be related to the extent of inter-splat boundary cracking. Further, it has been shown that the standard models relating elastic modulus to the crack density are capable of explaining the observed modulus in the case of cold spray coatings in the as-coated and heat-treated conditions.  相似文献   

14.
300M钢表面冷喷涂锌镍复合涂层性能研究   总被引:2,自引:2,他引:0  
目的 研究300M高强钢表面的冷喷涂锌镍复合涂层的涂层性能.方法 采用机械混合的方式将锌粉和镍粉进行混合,利用低温气动喷涂技术在300M高强钢表面制备锌镍复合涂层,采用扫描电子显微镜、能量色散谱和显微硬度测试仪研究涂层的微观组织结构.采用普通中性盐雾加速实验、涂层破损盐雾加速试验及户外暴晒试验,对冷喷涂锌镍涂层的抗腐蚀性能进行综合评价.考核冷喷涂对300M钢基材疲劳性能的影响.结果 根据SEM的表面及截面图片分析,冷啧涂锌镍复合涂层十分致密,且无孔隙及裂纹,涂层的孔隙率平均为0.4%,结合强度40 MPa左右.根据EDS结果分析,锌镍复合涂层中锌的质量分数为85%左右,镍的质量分数为15%左右.锌镍复合涂层的显微硬度为70.8HV0.49.锌镍复合涂层中镍粒子的强化作用,提高了涂层的硬度.冷喷涂锌镍复合涂层具有非常好的抗腐蚀性能,盐雾实验超过770h,即使涂层破损也可以达到600h.户外暴晒实验12个月表面无明显腐蚀,并且冷喷涂对300M钢基材的疲劳性能没有影响.结论 冷喷涂锌镍复合涂层作为抗腐蚀涂层,可以对300M高强钢提供保护.  相似文献   

15.
Corrosion Properties of Cold-Sprayed Tantalum Coatings   总被引:2,自引:0,他引:2  
Cold spraying enables the production of pure and dense metallic coatings. Denseness (impermeability) plays an important role in the corrosion resistance of coatings, and good corrosion resistance is based on the formation of a protective oxide layer in case of passivating metals and metal alloys. The aim of this study was to investigate the microstructural details, denseness, and corrosion resistance of two cold-sprayed tantalum coatings with a scanning electron microscope and corrosion tests. Polarization measurements were taken to gain information on the corrosion properties of the coatings in 3.5 wt.% NaCl and 40 wt.% H2SO4 solutions at room temperature and temperature of 80 °C. Standard and improved tantalum powders were tested with different spraying conditions. The cold-sprayed tantalum coating prepared from improved tantalum powder with advanced cold spray system showed excellent corrosion resistance: in microstructural analysis, it showed a uniformly dense microstructure, and, in addition, performed well in all corrosion tests.  相似文献   

16.
Cold spraying is a thermal spray process enabling the production of metallic and metal-ceramic coatings with low porosity and low oxygen content, capable of, e.g., resisting corrosion. The aim of this study was to characterize the microstructural and mechanical properties of cold-sprayed Ni-20Cr+Al2O3 coatings and to clarify the effect of the hard particles on different coating properties. Accordingly, the research focused on the microstructure, denseness (impermeability), adhesion strength, and hardness of the coatings. Scanning electron microscopy (SEM) analysis and corrosion tests were run to gain information on the through-porosity. Ceramic addition in cold-sprayed Ni-20Cr+Al2O3 coatings improved their quality by lowering their porosity. Moreover, hardness was slightly higher than those of cold-sprayed Ni-20Cr coating, indicating a hardening effect by the ceramic particles. The addition of Al2O3 also made it possible to use high gas temperatures without nozzle clogging, which affects coating properties, such as coating thickness, denseness, and hardness.  相似文献   

17.
NiAl-Al2O3 intermetallic-based composite coatings were prepared by cold spraying of Ni/Al-Al2O3 composite powders followed by post-spray annealing treatment. The phase transformation mechanism from Ni/Al mechanical alloy to intermetallic compounds and its influence on the microstructure were examined to aim at controlling the coating microstructure. Results show that with the porous Ni/Al and Ni/Al-Al2O3 green compacts, a self-propagating high-temperature synthesis (SHS) reaction is ignited at a temperature of 500-600 °C. However, a SHS reaction could not be ignited for the cold-sprayed dense Ni/Al and Ni/Al-Al2O3 alloy coatings with or without a substrate. The phase transformation from Ni/Al mechanical alloy to NiAl intermetallic compound during post-spray annealing evidently can be attributed to a diffusion mechanism. Compared to the quite porous structure of the composites resulting from SHS, the composite coatings via diffusion phase transformation during post-spray annealing treatment present a relatively dense microstructure with neither large pores nor micro-sized cracks.  相似文献   

18.
Residual stress development in cold sprayed Al,Cu and Ti coatings   总被引:1,自引:0,他引:1  
Residual stresses play an important role in the formation and performance of thermal spray coatings. A curvature-based approach where the substrate–coating system deflection and temperature are monitored throughout the coating deposition process was used to determine residual stress formation during cold spray deposition of Al, Cu and Ti coatings. The effect of substrate material (carbon steel, stainless steel and aluminium) and substrate pre-treatment (normal grit blasting, grit blasting with the cold spray system and grinding for carbon steel substrate) were studied for all coating materials with optimized deposition parameters. Mainly compressive stresses were expected because of the nature of cold spraying, but also neutral as well as tensile stresses were formed for studied coatings. The magnitudes of the residual stresses were mainly dependent on the substrate/coating material combination, but the surface preparation was also found to have an effect on the final stress stage of the coating.  相似文献   

19.
This study attempted to manufacture a Cu-In coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. To examine the microstructural and property changes made to the Cu-In coating layer and Cu coating layer (comparison material), ICP, XRD, SEM, and other tests were conducted; purity, density, hardness, porosity, and bond-strength were measured. The results showed that coating layers with thickness of 20 mm (Cu) and 810 μm (Cu-In) could be manufactured via cold spraying under optimal process conditions. With the Cu-In coating layer, the pure Cu and intermetallic compounds of Cu7In3 and CuIn4 were found to exist inside the layer regardless of annealing heat treatment. The preannealing inconsistent microstructure of the layer, whose phases were difficult to distinguish was found to have transformed into one with clearer phase distinction and fine, consistent grains following thermal treatment via a progress of recovery, recrystallization, and grain growth. The porosity and hardness values of the coating layers were 1.4% and 133.9 HV, respectively, for Cu and 3.54% and 476.6 HV, respectively, for Cu-In. The values of the Cu-In layer were higher than those of the Cu layer in terms of porosity and hardness, which declined drastically after annealing. With the porosity of the Cu-In coating layer in particular, the higher value found during the preannealing stage dropped to 0.36% after heat treatment of 773 K/1 h as the level on a par with pure Cu (0.44%), thus indicating the improved quality of the Cu-In layer. Moreover, the results of the bond-strength measurement performed on the Cu-In coating layer and annealing treated materials revealed the strength to be relatively high for heat treated coating layers. Based on the findings of this study and on the comparison and discussion of the properties that are typically required of the target material, the Cu-In coating layer manufactured via cold spray process and annealing heat treatment can be said to be applicable as sputtering target in the future.  相似文献   

20.
Powder properties of the feedstock used for spray coatings, especially cold-spray coatings, have an influence on the coating properties such as deposition efficiency, morphology and hardness. The effects of pretreatment on Cu feedstock with dendritic morphologies used for cold spraying were investigated. The Cu powders were pretreated into air and vacuum in the temperature range of 50–200 °C at dwell times of 1 and 6 h. The deposition efficiency of the air-annealed feedstock shows an initial increase due to the stress relaxation till the oxidation begins and prevails in bringing about drop in the efficiency. The coatings produced from the vacuum-annealed feedstock had much higher deposition efficiency than the air-annealed feedstock, resulting from the combined effect of stress relaxation and reduction of Cu. Therefore, it was confirmed that the feedstock properties modified by a pretreatment had a significant influence on the properties of cold-sprayed coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号