首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
研究了纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能。为了提高纳米粒子的分散性,对其进行了表面接枝改性。用磨损试验机评价了复合材料的摩擦学性能,发现当纳米粒子质量分数为5%,纤维质量分数为10%时,复合材料具有最低的摩擦系数和比磨损率。用扫描电镜观察了磨损面的形貌,研究了各种材料在相同条件下被硝酸刻蚀的程度,并用...  相似文献   

2.
Impact response of Kevlar composites with filled epoxy matrix   总被引:1,自引:0,他引:1  
Kevlar fibres have been widely used as impact-resistant reinforcement in composite materials. The paper studies the impact behaviour as well as damage tolerance of Kevlar/filled epoxy matrix. Two different fillers, cork powder and nanoclays Cloisite 30B, were used in order to improve the impact response of these laminates. For better dispersion and interface adhesion matrix/clay nanoclays were previously subjected to a silane treatment appropriate to the epoxy resin. The fillers adding increases the maximum impact load but the opposite tendency was observed for the displacement. Nanoclays promote higher maximum impact loads, lower displacements, the best performance in terms of elastic recuperation and the maximum residual tensile strength.  相似文献   

3.
实验研究表明,纤维束/环氧树脂复合材料试件的横向拉伸强度与工程上常用的单向层合板横向拉伸强度在趋势上具有很好的相关性,但是数值上存在一定差距。本文使用两种碳纤维和两种环氧树脂制备了三种纤维束/环氧树脂复合材料和单向层合板,并分别测量了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度,以及环氧基体的拉伸强度。在实验基础上,应用Griffith断裂强度理论建立了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度的关系模型,通过两种复合材料实验的结果拟合了该模型中的参数。利用第三种复合材料实验进行校验,发现该模型预测的单向层合板横向拉伸强度与实测强度之间达到很好的一致性,相对偏差为9%。采用本文提出的方法,可以用较为简单的纤维束/环氧树脂复合材料和环氧基体拉伸试验预测单向层合板的横向拉伸强度。  相似文献   

4.
采用超声波振荡与超声波破碎两种分散方法制备了低含量碳纳米管(CNTs)增强的环氧树脂, 研究了CNTs对树脂流变特性、 固化特性和力学性能的影响。进一步采用该树脂体系通过真空灌注工艺(VARIM)制备了CNTs含量为0.01%的CNTs-玻璃纤维/环氧树脂复合材料层板, 研究了两种分散方式下CNTs对复合材料层板力学性能的影响和CNTs的增强机制。结果表明: 超声波破碎分散使CNTs长度变短, 分散性更好, 与超声波振荡分散方式相比, CNTs对树脂增黏效果和树脂固化反应的影响更明显。采用双真空灌注工艺, 两种超声波分散方式下CNTs均提高了复合材料的弯曲性能、 层间剪切性能和树脂与纤维的粘结强度, 而单真空灌注工艺下CNTs的增强效果不明显, 说明受纤维过滤作用的影响, 选择合适的灌注工艺和CNTs分散方式, 低含量CNTs可实现对灌注工艺复合材料层板的增强。  相似文献   

5.
对比研究了环氧5228A树脂及碳纤维/环氧5228A树脂复合材料层合板在3种湿热环境(水煮、70℃水浸,70℃85%相对湿度)下的湿热性能,考察了湿热条件对复合材料层间剪切性能的影响规律,并从吸湿特性、物理化学特性、树脂力学性能、湿应力等方面分析了不同湿热环境下复合材料性能衰减的机制。研究表明,碳纤维/高温固化环氧树脂复合材料层间剪切性能主要是由吸湿率决定,相同吸湿率不同湿热条件下性能的下降幅度基本相同;3种湿热条件下该树脂及其复合材料未发生化学反应、微裂纹等不可逆变化,复合材料层合板湿热老化机制主要是吸入水分后基体增塑和树脂、纤维湿应变不一致导致的湿应力对复合材料性能的负面作用。  相似文献   

6.
The effect of incorporation of tungsten carbide (WC) and tantalum niobium carbide (Ta/NbC) powders on three-body abrasive wear behaviour in glass fabric–epoxy (G–E) composites was investigated and findings are analysed. A vacuum assisted resin transfer moulding (VARTM) technique was employed to obtain a series of G–E composites containing different fillers (WC and WC + Ta/NbC). Dry sand rubber wheel abrasion test was carried out at 200 rpm speed. The effect of different loads (22 and 32 N) and abrading distances (from 135 to 540 m) on the performance of the wear resistance were measured. The wear volume loss of the composites was found increasing with the increase in abrading distances and under the same conditions the specific wear rate decreases. The hard powders filled G–E composite systems exhibit lower wear volume loss and lower specific wear rate as compared to unfilled G–E composite system. The features of worn surfaces of the specimen were evaluated at higher and lower abrading distances at load of 32 N were using scanning electron microscope (SEM) and results indicate more severe damage to matrix and glass fiber in unfilled composite system as compared to hard powder filled composites.  相似文献   

7.
In this research work, mechanical and tribological characteristics of ortho cresol novalac epoxy (OCNE)-based nanocomposites filled with nanoparticulates of SiC, Al2O3, and ZnO have been investigated. Also, in these investigations, the influence of wear parameters such as applied normal load, sliding velocity, filler contents, and sliding distance have been explored. The experimental plan for four factors at three levels using face centered composite design (CCD) has been employed by the response surface methodology (RSM) technique. The friction and wear tests were carried out using a pin on disc wear test apparatus under dry sliding conditions. The hardness and flexural strength of nano ortho cresol novalac epoxy composites filled with nano (SiC, Al2O3, and ZnO) particulates increases with an increase in the filler contents. Whereas, the tensile strength of these nanocomposites increases with an increase in the filler contents from 1 to 2 wt%, and with a further increase in filler contents the tensile strength decreases. The results of the study also showed that (2 wt%) filler contents bring superior mechanical and tribological properties. The lowest coefficient of friction and specific wear rate were found with nano Al2O3-filled composites. Also, the wear mechanisms of these nanocomposites were studied using a scanning electron microscope (SEM) equipped with an EDS analyzer.  相似文献   

8.
《Composites》1993,24(4):347-353
The influence of three thermosetting matrix resins — epoxy, polyester and poly(vinylbutyral)-modified phenolic — on the sliding wear of glass woven roving reinforced polymer composites under dry conditions has been investigated. Amongst the three composites, glass/phenolic composites exhibit the highest mechanical properties whereas the highest wear resistance (minimum specific wear rate) is offered by glass/epoxy composites. The critical velocity, at which the specific wear attains a minimum value, is higher for glass/polyester composite than for the other two composites. The lowest coefficient of friction has been observed in glass/phenolic composites at all sliding velocities.  相似文献   

9.
This study deals with the impact property and damage tolerance of matrix hybrid composite laminates with different laminate constitution. The matrix hybrid composite laminates consisted of the laminae with a conventional epoxy resin and the laminae with a flexible epoxy resin modified from the conventional resin to avoid the interlaminar delamination. The impact energy absorption ratio greatly depended on the matrix resin placed at the impact face. The energy absorption was almost constant if the conventional resin was placed at the impact surface layer, while it increased exponentially with the increasing fraction of the flexible resin if the flexible resin was placed at the impact face. The impact energy was absorbed by the damage development and propagation in the laminate with conventional resin laminae as the impacted face, while it was absorbed by both the recoverable deformation of the flexible resin and the damage propagation in the laminate with flexible resin laminae as the impacted face.  相似文献   

10.
为探究热塑性酚酞基聚醚酮(Polyaryletherketone with Cardo,PEK-C)树脂薄膜及膜厚对层间增韧碳纤维/环氧树脂复合材料力学性能的影响,利用浸渍提拉法制备了三种不同厚度(分别约为1 μm、10 μm、30 μm)的PEK-C膜,通过热压成型制备了层间增韧碳纤维/环氧树脂复合材料层合板,对其进行了Ⅰ型层间断裂韧性、冲击后压缩强度、层间剪切及弯曲性能测试,并利用SEM观察微观形貌及AFM扫描微观相图。结果表明:不同PEK-C膜厚增韧碳纤维/环氧树脂复合材料的Ⅰ型层间断裂韧性、冲击后压缩强度及层间剪切强度有不同程度提高,Ⅰ型层间断裂韧性及层间剪切强度以膜厚为10 μm最佳,分别增大了157.17%和17.57%,冲击后压缩强度以膜厚为30 μm最佳,达到了186.67 MPa,这是由于PEK-C与环氧树脂在热压固化过程中形成了双相结构,改善了材料韧性;但弯曲性能持续下降,强度及模量由未增韧的1 551 MPa、106 GPa分别降至30 μm时的965 MPa、79 GPa,这是由于PEK-C树脂扩散进入环氧树脂中,降低了纤维体积分数及材料刚度。   相似文献   

11.
Dry bamboo culms of Dendrocalamus strictus were processed into thin laminas and cold pressed using epoxy resin to produce layered bamboo epoxy composite laminates. Mechanical properties of layered bamboo–epoxy composite laminates including tensile strength, compressive strength, flexural strength and screw holding capability have been evaluated. Mode of failure were identified at macroscopic level as suggested in ASTM standard and their mechanism were examined at microscopic level using SEM analysis of fractured surfaces under different type of tests.  相似文献   

12.
The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.  相似文献   

13.
Titania (TiO2) reinforced homogeneous and functionally graded epoxy composites are developed by simple mechanical stirring and vertical centrifugal casting technique respectively. Investigations on mechanical and wear characteristics of TiO2 reinforced homogeneous epoxy composites and its functionally graded composite materials developed for tribological applications are presented. The effect of various operational variables, material parameters and their interactive influences on specific wear behaviour of these composites has been studied systematically. A series of test are conducted on a pin-on-disc machine with three sliding velocities of 105, 209 and 314 cm/s under three different normal loading of 20 N, 30 N and 40 N. Out of all samples 20 wt.% epoxy–TiO2 epoxy graded composites exhibited lowest specific wear rate TiO2 particle additions on epoxy graded composites have a dramatic effect on the flexural strength, tensile modulus and impact strength in comparison to homogeneous composites. Scanning electron microscope (SEM) observations also indicate that in homogeneous composites TiO2 particles are peeled off from the matrix to form holes while in graded composite materials under same experimental conditions the TiO2 particles remain quite intact to the matrix.  相似文献   

14.
《Composites Part A》2007,38(3):917-924
This study investigated the damage accumulation behaviors in carbon fiber reinforced nanocomposite laminates under tensile loading. The nanocomposite laminates used in this study were manufactured from prepregs consisting of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional carbon fiber reinforced nanocomposite laminates were evaluated, and cross-ply laminates were subjected to tension tests in order to observe the damage accumulation behaviors of matrix cracks. A clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was suggested that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, which is considered to cause the retardation of matrix crack formation.  相似文献   

15.
环氧树脂基复合材料抗冲蚀磨损特性研究   总被引:8,自引:0,他引:8  
采用了电子显微镜,万能材料试验机,旋流式磨损试验等手段,对环氧基树脂高分子复合材料的粘接强度和抗蚀磨损性能进行了综合研究。  相似文献   

16.
Bond-phase defects in laminates can affect the mechanical properties of laminate composites. In this study, the effects of adhesion area, number of glue spots, and bond thickness on the effective Young's modulus of adhered microscope glass slides have been investigated. Three different adhesive agents (super glue, epoxy cement, and epoxy resin) were used to explore the effect of bond-phase defects upon adhesion in laminates. The elastic moduli of single glass slides, unadhered glass slide pairs, glass slide/glue composite specimens and epoxy resin specimens were non-destructively determined by a sonic resonance technique. The change of Young's modulus of adhered glass slides was monitored while adhesion area per cent ranged from 0.35%–100%. Trends in the Young's moduli of glass slide/glue composite specimens have been analysed by a least-squares best-fit procedure to two empirical equations. Qualitative explanations for the observed trends are discussed in this paper.  相似文献   

17.
The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the"dusting" wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.  相似文献   

18.
《Composites Part A》2007,38(6):1525-1532
Self-healing is receiving increasing interest worldwide as a technology to autonomously address the effects of damage in composite materials. This paper describes the results of four point bend flexural testing (ASTM-D6272-02) of T300/914 carbon fibre reinforced epoxy with resin filled embedded hollow glass fibres (HGF) which provided a self-healing functionality. The study investigated the effect of the embedded HGF on the host CFRP mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact. Specimens were tested in the undamaged, damaged and healed conditions using a commercial two-part epoxy healing agent (Cytec Cycom 823). Microscopic characterisation of the embedded HGF was also undertaken to characterise the effect on the host laminate fibre architecture.  相似文献   

19.
The residual tensile strength of glass filled particulate composites has been determined after low energy impact for various energy values. The material systems constructed for the needs of this research consisted of epoxy resin filled with glass beads. The glass beads were either uncoated or alternatively coated with a reactive silane based bonding agent. Specimens with various filler volume fractions were available. The effect of silane coating as well as the filler volume fraction was analytically discussed. Finally, a model developed in previous work for continuous fibre reinforced composite laminates was adopted to describe the residual tensile strength after impact. In most of the cases the predicted curves fit the experimental results very well.  相似文献   

20.
Bisphenol A based thermoplastic polyesters are commonly used in the industry as binders, or tackifiers, to produce cost-saving preforms in Liquid Composite Moulding processes such as Vacuum Assisted Resin Transfer Moulding (VARTM). However, it is often reported that the presence of these polyesters has a detrimental effect on the mechanical properties of the resulting composite laminates. In contrast, this study shows that interlaminar toughness can be increased without negatively affecting other properties by coating the reinforcing plies with a bisphenol A based thermoplastic polyester if some precautions are taken in mind.The polyester was added to an epoxy resin in order to study its effect on the thermophysical properties and fracture toughness of the bulk epoxy. The polyester molecules acted as a plasticizer for the epoxy resin when the polyester was added in low amounts. This increased the bulk fracture toughness of the epoxy resin by 30%. Polyester modified glass/epoxy laminates were produced and tested for Mode I interlaminar fracture toughness and flexural properties. The increased toughness of the epoxy matrix led to a 60% increased Mode I interlaminar fracture toughness of the laminates, without negatively affecting flexural stiffness and strength of the laminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号