首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对基于数据挖掘的通信网告警相关性分析进行了研究。由于通信网络是动态变化的,用于动态网络资源和服务的自适应关联规则算法需要充分利用和维护原有规则来发现新规则,使网络结构与规则库都能快速更新,为此提出了新型的动态关联规则挖掘算法IDARM。理论分析与仿真实验都显示此算法性能优越、可扩展性好,并在一些特定情况下能显著提高效率。  相似文献   

2.
一种新型的分布式关联规则挖掘算法研究   总被引:1,自引:0,他引:1  
提出了一种新型基于压缩矩阵的分布式关联规则挖掘算法─CMDMA算法.  相似文献   

3.
基于图的关联规则改进算法   总被引:1,自引:0,他引:1  
关联规则挖掘是数据挖掘研究的最重要课题之一。基于图的关联规则挖掘DLG算法通过一次扫描数据库构建关联图,然后遍历该关联图产生频繁项集,有效地提高了关联规则挖掘的性能。在分析该算法基本原理基础上,提出了一种改进的算法—DLG#。改进算法在关联图构造同时构造项集关联矩阵,在候选项集生成时结合关联图和Apriori性质对冗余项集进行剪枝,减少了候选项集数,简化了候选项集的验证。比较实验结果表明,在不同数据集和不同支持度阈值下,改进算法都能更快速的发现频繁项集,当频繁项集平均长度较大时性能提高明显。  相似文献   

4.
告警关联规则挖掘是进行系统故障诊断、定位的重要方法。由于民航旅客服务信息系统的各子系统之间的关联关系,子系统一旦出现故障,会报出大量甚至海量的告警信息,使得维护人员在大量告警数据面前无法准确进行故障定位。针对故障诊断、定位等难题,提出基于滑动时间窗口框架的关联规则挖掘方法,在大量告警信息中寻找故障源、故障因素之间的关联。实验结果表明,提出的方法能准确、快速地发现有价值的告警关联规则,为系统维护人员提供决策支持。  相似文献   

5.
数据挖掘是目前比较热门的一个研究领域,而关联规则的挖掘又是数据挖掘的一个重要课题。首先介绍关联规则的基本概念和它的挖掘过程,然后就几种典型的关联规则算法进行概括并对它们进行分析和性能的比较.对关联规则挖掘应用的现状进行总结。  相似文献   

6.
几种典型关联规则算法的分析与比较   总被引:1,自引:0,他引:1  
胡佳 《现代计算机》2011,(17):15-17
数据挖掘是目前比较热门的一个研究领域,而关联规则的挖掘又是数据挖掘的一个重要课题。首先介绍关联规则的基本概念和它的挖掘过程,然后就几种典型的关联规则算法进行概括并对它们进行分析和性能的比较,对关联规则挖掘应用的现状进行总结。  相似文献   

7.
基于数组的关联规则挖掘算法   总被引:12,自引:0,他引:12  
孟祥萍  钱进  刘大有 《计算机工程》2003,29(15):98-99,109
提高频繁项集挖掘算法的效率是关联规则挖掘研究的一个重点领域。文章提出了基于数组的关联规则挖掘算法,只需要扫描数据库1次,通过不断减少数据库中的事务个数,并且利用一维数组对候选2-项集进行计数来提高挖掘效率。实验表明,该文所提出的算法效率比经典Apriori算法快2~3倍。  相似文献   

8.
数据挖掘能从不同角度、不同抽象层上看待数据,这将潜在地影响数据的私有性和安全性。着重介绍了关联规则数据挖掘中的规则隐藏算法,提出了一个改进的关联规则隐藏算法OSA,该算法综合采用项的添加和约束方法来降低关联规则的支持度和置信度,从而达到规则隐藏的目的。  相似文献   

9.
随着数据库信息技术的快速发展,数据挖掘技术也得到了快速的发展和应用.数据挖掘技术是在海量的信息中找出有价值的信息的一种技术,在数据挖掘技术中关联规则算法是重要的研究对象.对数据挖掘技术研究现状进行了分析,对数据挖掘技术的特点及应用进行了研究,结合关联规则算法的具体应用特点,对基于关联规则算法的数据挖掘技术进行了分析与研究.  相似文献   

10.
关联规则挖掘中对Apriori算法的研究   总被引:3,自引:1,他引:3       下载免费PDF全文
针对Apriori寻找频繁项集问题,提出了基于垂直事务列表的树形结构的挖掘算法。该算法结合项集的有序特性,使生成树的每一层结点从左往右按支持度大小升序排列,这样得到的候选频繁项集的集合是最小的,大大减少了候选频繁项集的数量,而且能保持频繁项集的完整性,从而节约了计算开销,提高了算法的效率。  相似文献   

11.
基于分布数据库的快速关联规则挖掘算法   总被引:8,自引:0,他引:8  
关联规则发现是数据挖掘的重要研究内容,随着数据库中数据的不断增加,大数据集环境下的关联规则发现日益受到重视,分布式关联规则发现是解决这一问题的有效方法。分布式数据库环境下的关联规则挖掘算法中,时间开销主要体现在两方面(:1)频繁项目集的确定;(2)网络的通讯量。为了解决第一个问题,文章提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些”或”、”与”、”异或”等逻辑运算操作,显著降低了算法的实现难度。将该算法与DMA算法相结合提出改进算法FDMA。理论分析和实验结果表明,算法FDMA大大提高了关联规则挖掘的效率,算法是有效可行的。  相似文献   

12.
一种动态的频繁项集挖掘算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于无向项集图的动态频繁项集挖掘算法。当事务数据库和最小支持度发生变化时,该算法只需重新遍历一次无向项集图,即可得到新的频繁项集。与传统的频繁项集挖掘算法相比,在执行效率上有显著提高。  相似文献   

13.
现有的数据挖掘算法多是集中式环境下的数据挖掘处理,但目前的大型数据库多以分布式的形式存在,针对分布式数据挖掘算法FDM及其改进算法中存在的频繁项集丢失问题和网络通信开销过高的问题,提出了一种改进的基于关联规则的分布式数据挖掘算法LTDM,LTDM算法引入了映射标示数组机制,可以在保证频繁项集完整性的同时降低网络的通信开销。实验结果证明了算法的有效性。  相似文献   

14.
正负关联规则挖掘算法研究   总被引:6,自引:0,他引:6  
本文提出了一种快速有效的正、负关联规则挖掘算法 MPNAR。另外,针对关联规則挖掘算法中支持数计算的复杂性,提出了一种基于二进制形式的支持数计算方法。实验结果表明算法 MPNAR 是有效和可行的。  相似文献   

15.
关联规则挖掘AprioriHybrid算法的研究和改进   总被引:5,自引:0,他引:5  
秦吉胜  宋瀚涛 《计算机工程》2004,30(17):7-8,135
分析了关联规则挖掘Apriori、AprioriTid和AprioriHybrid算法的优缺点,针对AprioriHybrid算法的瓶颈提出了一种使用支持度矩阵对频繁2项集快速验证的方法,并给出了一种简单易行,而又高效的逐步缩减交易数据库的方法,加快了对候选频繁k项集的验证速度,从而显著地提高AprioriHybrid算法的效率。  相似文献   

16.
一种无冗余的快速关联规则发现算法   总被引:4,自引:0,他引:4  
吴伟平  林馥  贺贵明 《计算机工程》2003,29(8):90-91,108
关联规则的发现是数据挖掘的一个重要方面。传统算法不但涉及大量的数据库操作,而且生成的关联规则之间存在着大量的冗余规则。文章给出了一种无冗余的快速关联规则算法,能大量减少所需的I/O的次数,内存开销适中,并且利用规则之间的冗系关系消除了规则之间的冗余性。  相似文献   

17.
FP-growth算法用于关联规则挖掘分成两个阶段:构建频繁模式树和进行频繁模式挖掘;对这两个阶段分别进行改进,若项头表中存在同频度的频繁项,在构建FP-tree的过程动态调整其位置,构建压缩的最优化FP-tree,提出了IMFP-tree算法。在进行频繁模式挖掘阶段,提出CFP-mine算法,CFP-mine算法采用一种新方法构建条件模式基,且采用组合方式挖掘频繁项集,有别于传统FP-growth算法的挖掘过程,理论上证明和实验验证本算法的正确性和高效性。  相似文献   

18.
基于位串数组的关联规则挖掘算法   总被引:4,自引:0,他引:4  
挖掘关联规则是数据挖掘研究的一个重要方面。然而,目前提出的算法仍存在一些问题,如复杂的数据结构、候选项集生成等等。该文使用更简单的数据结构———位串数组,并提出了一种新的挖掘算法。该方法能通过并行投影和压缩技术扩展到大数据库中进行挖掘规则。  相似文献   

19.
分布式环境下约束性关联规则的快速挖掘   总被引:2,自引:0,他引:2  
研究人员针对单机环境提出了约束性关联规则的挖掘算法,但它们不适用于分布式环境.为此本文讨论分布式环境下约束性关联规则的快速挖掘技术,提出一种基于分布式环境的约束性关联规则快速挖掘算法DCAR,其中包括局部约束性频繁项目集挖掘算法MLFC和全局约束性频繁项目集挖掘算法MGFC.该算法根据布尔约束条件产生向导集,采用一种新的候选项集生成函数Reorder-gen,该函数通过向导集高效地产生分布式环境中满足约束条件的、数量较少且完备的候选项集,并且求解全局约束性频繁项集过程中,传送局部候选项集支持数的通信量为O(n),从而提高了算法的挖掘效率.将本文提出的算法加以实现,实验结果表明DCAR算法高效可行,其效率大约是DMA-IC算法的2-3倍.  相似文献   

20.
GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets   总被引:4,自引:0,他引:4  
We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets. GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive focusing to perform maximality checking, and diffset propagation to perform fast frequency computation. Systematic experimental comparison with previous work indicates that different methods have varying strengths and weaknesses based on dataset characteristics. We found GenMax to be a highly efficient method to mine the exact set of maximal patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号