首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Core–shell nanoparticles (NPs) are amongst the most promising candidates in the development of new functional materials. Their fabrication and characterization are challenging, in particular when thin and intact shells are needed. To date no technique has been available that differentiates between intact and broken or cracked shells. Here a method is presented to distinguish and quantify these types of shells in a single cyclic voltammetry experiment by using the different electrochemical reactivities of the core and the shell material. A simple comparison of the charge measured during the stripping of the core material before and after the removal of the shell makes it possible to determine the quality of the shells and to estimate their thickness. As a proof‐of‐concept two multifunctional examples of core–shell NPs, Fe3O4@Au and Au@SnO2, are used. This general and original method can be applied whenever core and shell materials show different redox properties. Because billions of NPs are probed simultaneously and at a low cost, this method is a convenient new screening tool for the development of new multifunctional core–shell materials and is hence a powerful complementary technique or even an alternative to the state‐of‐the‐art characterization of core–shell NPs by TEM.  相似文献   

3.
A novel heterostructured Si@C@Ge anode is developed via a two‐step sol–gel method. A facile and straightforward Ge decoration significantly boosts the Li‐storage performance of core–shell Si@C nanoparticles on both mechanics and kinetics. The Si@C@Ge anode shows unprecedented electrochemical performance in terms of accessible capacity, cycling stability, and rate capability when compared to those of a core–shell Si@C anode. Based on the experimental results and analysis of the mechanism, it is evident that high‐conductivity Ge nanograins on the surface facilitates the Li diffusivity and electron transport and guarantees high ion accessibility. Moreover, it is the Ge nanograins that serve as buffering cushion to tolerate the mechanic strain distribution on the electrode during lithiation/delithiation processes.  相似文献   

4.
5.
Monodispersed, readily‐grafted, and biocompatible surface‐enhanced Raman spectroscopic (SERS) tagging materials are developed; they are composed of bimetallic Au@Ag nanoparticles (NPs) for optical enhancement, a reporter molecule for spectroscopic signature, and a carbon shell for protection and bioconjugation. A controllable and convenient hydrothermal synthetic route is presented to synthesize the layer‐by‐layer triplex Au–Ag–C core–shell NPs, which can incorporate the Raman‐active label 4‐mercapto benzoic acid (4‐MBA). The obtained gold seed–silver coated particles can be coated further with a thickness‐controlled carbon shell to form colloidal carbon‐encapsulated Aucore/Agshell spheres with a monodisperse size distribution. Furthermore, these SERS‐active spheres demonstrated interesting properties as a novel Raman tag for quantitative immunoassays. The results suggest such SERS tags can be used for multiplex and ultrasensitive detection of biomolecules as well as nontoxic, in vivo molecular imaging of animal or plant tissues.  相似文献   

6.
The replicative construction of metal–organic frameworks (MOFs) templated with solvent‐insoluble solid substrates is of marked importance, as it allows for the assembly of 2D and 3D macro‐ and mesoscopic architectures with properties that are challenging to attain by the conventional solution‐based synthesis approach. This work reports an in situ and direct construction of MOFs from zero‐valent metal substrates via a green hydrothermal oxidation–MOF construction chemistry without the use of any additional metal source, chemical reagents, or acidification of solvent, and elucidates the zero‐valent metal derived formation mechanisms of MOFs and their structure modulation to 1D nanofibers (NFs), 2D film, and 3D core–shell microstructures. Through modulation of the competing surface oxidation‐dissolution and MOF crystallization kinetics, Al@MIL‐53 core–shell microstructures and MIL‐53 (Al) NFs are obtained that exhibit unique morphologies and marked properties superior to the conventional MIL‐53 (Al) powders. The generality of zero‐valent metal‐templated synthesis of MOFs is demonstrated with formation of MIL‐53 (Al), HKUST‐1, and ZIF‐7 polycrystalline films on Al, Cu, and Zn metal meshes, elucidating the significance of the approach utilizing solid metal substrate that can be easily processed into various shapes, architectures, and compositions.  相似文献   

7.
Organic–inorganic metal halide perovskite solar cells have emerged in the past few years to promise highly efficient photovoltaic devices at low costs. Here, temperature‐sensitive core–shell Ag@TiO2 nanoparticles are successfully incorporated into perovskite solar cells through a low‐temperature processing route, boosting the measured device efficiencies up to 16.3%. Experimental evidence is shown and a theoretical model is developed which predicts that the presence of highly polarizable nanoparticles enhances the radiative decay of excitons and increases the reabsorption of emitted radiation, representing a novel photon recycling scheme. The work elucidates the complicated subtle interactions between light and matter in plasmonic photovoltaic composites. Photonic and plasmonic schemes such as this may help to move highly efficient perovskite solar cells closer to the theoretical limiting efficiencies.  相似文献   

8.
Core/shell structured metal halide perovskite nanocrystals (NCs) are emerging as a type of material with remarkable optical and electronic properties. Research into this field has been developing and expanding rapidly in recent years, with significant advances in the studies of the shell growth mechanism and in understanding of properties of these materials. Significant enhancement of both the stability and the optical performance of core/shell perovskite NCs are of particular importance for their applications in optoelectronic technologies. In this review, the recent advances in core/shell structured perovskite NCs are summarized. The band structures and configurations of core/shell perovskite NCs are elaborated, the shell classification and shell engineering approaches, such as perovskites and their derivative shells, semiconductor shell, oxide shell, polymer shell, etc. are reviewed, and the shell growth mechanisms are discussed. The prospective of these NCs in lighting and displays, solar cells, photodetectors, and other devices is discussed in the light of current knowledge, remaining challenges, and future opportunities.  相似文献   

9.
In this paper, a facile sol–gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385 nm in diameter) and Cr2O3, α‐Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell‐structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@α‐Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV‐vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high‐resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098 Oe (5 K), 648 Oe (5 K), and 91 Oe (298 K), respectively.  相似文献   

10.
New porous materials are of great importance in many technological applications. Here, the direct synthesis of multi‐layer graphene and porous carbon woven composite films by chemical vapor deposition on Ni gauze templates is reported. The composite films integrate the dual advantages of graphene and porous carbon, having not only the excellent electrical properties and flexibility of graphene but also the porous characteristics of amorphous carbon. The multi‐layer graphene/porous carbon woven fabric film creates a new platform for a variety of applications, such as fiber supercapacitors. The designed composite film has a capacitance of 20 μF/cm2, which is close to the theoretical value and a device areal capacitance of 44 mF/cm2.  相似文献   

11.
Multidrug resistance (MDR) is the main obstruction against the chemotherapy for hepatocellular carcinoma. Herein, a biodegradable multifunctional tumor‐targeted core–shell structural nanocarrier (RGD peptide functionalized nanoparticles, RGD‐NPs) is reported for treating MDR hepatocellular carcinoma, which consists of three components: pH‐triggered calcium phosphate shell, long circulation phosphatidylserine‐polyethylene glycol (PS‐PEG) core, and an active targeting ligand RGD peptide. Drug‐resistance inhibitor (verapamil, VER) and chemotherapeutic agent (mitoxantrone, MIT) are separately encapsulated into the outer shell layer and inner core layer to obtain VER and MIT loaded RGD‐NPs (VM‐RGD‐NPs). Due to the shell–core structure, the VER and MIT can release sequentially, thus synergistically weakening the efflux effect to MIT by MDR cells. Also, the calcium phosphate can trigger lysosomal escaping through the varied pH value. Together with the optimized internalization pathway in MDR tumor cells, the increased intracellular effective chemotherapeutic drug concentration can be realized, thus achieving the improved curative effect. In this system, the PEG extends the circulation time in vivo. Also, the peptide RGD distinctly increases the affinity to MDR tumors with respect to nontargeted nanoparticles. As a consequence, VM‐RGD‐NPs exhibit a significant synergistic effect toward the MDR hepatocellular carcinoma, providing a promising therapeutic approach for MDR tumor.  相似文献   

12.
Microorganisms are widely used as the biotemplates for producing micro/nanomaterials owing to their unique features, such as exquisite morphology, renewable, and environmentally friendly. However, mass intracellular synthesis of uniformly dispersed nanoparticles (NPs) inside microorganisms is still challenging, especially in a predictable and controllable manner. Here, a facile and efficiency strategy is proposed to controllably produce highly dispersed and surfactant‐free Pd@Ag core–shell NPs within the Spirulina platensis (Sp.) cells. In this approach, the Sp. cells' permeability is enhanced by the hydrochloric acid treatment first, which enables the Pd NPs penetrate the cell envelope and distribute uniformly inside the cells, and then they can work as the catalytic seeds for the following electroless silver deposition, resulting in the intracellular fabrication of Pd@Ag core–shell NPs with no agglomeration. The Pd@Ag NPs show excellent catalytic activity (turnover frequency is up to 2893 h?1 for the 6.32 nm Pd@Ag NPs), good stability, and recyclability toward the 4‐nitrophenol reductions. The excellent properties are attributed to the asymmetrical core–shell structure, small size, and good dispersion of Pd@Ag NPs. Due to its facility, cost‐effectiveness, and versatility, this method can be expanded to other microorganisms, so it opens tremendous opportunities for various metallic nanoparticles intracellular synthesis as well as the practical application.  相似文献   

13.
The scarcity of platinum group metals provides a strong incentive to optimize the catalytic activity and stability, e.g., through nanoalloys or core–shell nanoparticles. Here, time‐resolved X‐ray total scattering and transmission electron microscopy characterization are used to study the formation of palladium–platinum core–shell nanoparticles under solvothermal conditions. It is shown that Pd rapidly forms small (5–10 nm), disordered primary particles, which agglomerate and crystallize when reaching 20–25 nm. The primary Pd particles provide nucleation sites for Pt, and, with extended reaction time, the Pd cores become fully covered with Pt shells. The observed core–shell material is surprising when considering the Pt–Pd phase diagram and relative surface energies, but it can be rationalized through the kinetics of precursor conversion. To bridge the gap between scientific studies and industrial demand for large‐scale production, the synthesis process is successfully transferred to a continuous flow supercritical reactor providing a simple scalable and green process for production of bimetallic nanocatalysts.  相似文献   

14.
In the current research, conductive patterns are deposited on different substrates by direct inkjet printing of conductive inks based on metal@carbon and bimetal@carbon core–shell nanoparticles synthesized by the RAPET (reaction under autogenic pressure at elevated temperatures) technique. Various co‐solvents and additives are examined for production of stable conductive ink. The morphology of the deposited layers is characterized by optical and scanning electron microscopy measurements. The stability of the prepared inks is examined by dynamic light scattering measurements. The electrical resistivity is measured by a four‐point probe system and calculated using the geometric dimensions. The results obtained are very promising and indicate that the conductivity of the deposited layers is close to that of bulk metals and higher than most results published so far. Moreover, the importance and advantages of the protective carbon layer that prevents metal oxidation is demonstrated.  相似文献   

15.
The synthesis of double‐hydrophilic core/shell cylindrical polymer brushes (CPBs), their hybrids with magnetite nanoparticles, and the directed alignment of these magnetic hybrid cylinders by a magnetic field are demonstrated. Consecutive grafting from a polyinitiator poly(2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (PBIEM) of tert‐butyl methacrylate (tBMA) and oligo(ethylene glycol) methacrylate (OEGMA) using atom‐transfer radical polymerization (ATRP) and further de‐protection yields core/shell CPBs with poly(methacrylic acid) (PMAA) as the core and POEGMA as the shell, which is evidenced by 1H NMR, gel permeation chromatography (GPC), and dynamic and static light scattering (DLS and SLS). The resulting core/shell brush is well soluble in water and shows a pH responsiveness because of its weak polyelectrolyte core. Pearl‐necklace structures are observed by cryogenic transmission electron microscopy (cryo‐TEM) at pH 4, while at pH 7, these structures disappear owing to the ionization of the core. A similar morphology is also found for the polychelate of the core/shell CPBs with Fe3+ ions. Superparamagnetic magnetite nanoparticles have also been prepared and introduced into the core of the brushes. The hybrid material retains the superparamagnetic property of the magnetite nanoparticles, which is verified by superconducting quantum interference device (SQUID) magnetization measurements. Large‐scale alignment of the hybrid cylinders in relatively low magnetic fields (40–300 mT) can easily be performed when deposited on a surface. which is clearly revealed by the atomic force microscopy (AFM) and TEM measurements.  相似文献   

16.
Mid‐infrared GaAs1?xSbx/InP core/shell nanowires are grown coherently with perfectly twin‐free zinc blende crystal structure. An unusual triangular InP shell with predominantly {112}A facets instead of {112}B facets is reported. It is found that this polarity preference is due to the surfactant role of Sb, which inhibits InP shell growth rate in the 〈112〉A directions. This behavior reveals a new degree of control and tunability allowed in manipulating nanowire facet geometry and polarity in radial heterostructures by a simple means. Tuning the Sb composition in the core yields controllable intense photoluminescence emission in both the 1.3 and 1.5 μm optical telecommunication windows, up to room temperature for single nanowires. The internal quantum efficiency of the core/shell nanowires is experimentally determined to be as high as 56% at room temperature. Transient Rayleigh scattering analysis brings complementary information, revealing the photoexcited carrier lifetime in the core/shell nanowire to be ≈100 ps at 300 K and ≈800 ps at 10 K. In comparison, the carrier lifetime of core‐only nanowire is below the detection limit of the system (25 ps). The demonstrated superior optical quality of the core/shell nanowires and their ideal emission wavelength range makes them highly relevant candidates for near‐infrared optoelectronic applications.  相似文献   

17.
18.
Group II–VI quantum dots (QDs) possess tunable electrical and optical properties that make them very attractive for high‐tech applications and power generation. The effects of proton irradiation on both the structural and physical properties of “giant” CdSe/CdS core–shell QDs (g‐CS QDs) are investigated. These experiments shed light on photoelectron delocalization in g‐CS QDs, where current linkages and strong variations in optical emission result from the spatial extension of the photoelectron wavefunctions over the conduction bands of CdSe and CdS. Monte Carlo simulations of ion–matter interactions show that the damaging rates can be set from the energy of impinging protons to promote the formation of structural defects in the core or shell. The formation of nanocavities is demonstrated after irradiation doses higher than ≈1017 H+ cm?2, while a continuous decrease in luminescence intensity is observed for increasing proton fluencies. This feature is accompanied by a concomitant lifetime decrease marking the rise of nonradiative phenomena and the occurrence of greater photocarrier transfers between CdS and CdSe. Current‐to‐voltage characterizations evidence that proton implantation can be implemented to enhance the photocurrent generation in g‐CS QDs. This increase is attributed to the delocalization of photoelectrons in the CdS shell, whose improvement is found to promote electron–hole pair separation.  相似文献   

19.
Core/shell nanoparticles that display a pH‐sensitive thermal response, self‐assembled from the amphiphilic tercopolymer, poly(N‐isopropylacrylamide‐co‐N,N‐dimethylacrylamide‐co‐10‐undecenoic acid) (P(NIPAAm‐co‐DMAAm‐co‐UA)), have recently been reported. In this study, folic acid is conjugated to the hydrophilic segment of the polymer through the free amine group (for targeting cancer cells that overexpress folate receptors) and cholesterol is grafted to the hydrophobic segment of the polymer. This polymer also self‐assembles into core/shell nanoparticles that exhibit pH‐induced temperature sensitivity, but they possess a more stable hydrophobic core than the original polymer P(NIPAAm‐co‐DMAAm‐co‐UA) and a shell containing folate molecules. An anticancer drug, doxorubicin (DOX), is encapsulated into the nanoparticles. DOX release is also pH‐dependent. DOX molecules delivered by P(NIPAAm‐co‐DMAAm‐co‐UA) and folate‐conjugated P(NIPAAm‐co‐DMAAm‐co‐UA)‐g‐cholesterol nanoparticles enter the nucleus more rapidly than those transported by P(NIPAAm‐co‐DMAAm)‐b‐poly(lactide‐co‐glycolide) nanoparticles, which are not pH sensitive. More importantly, these nanoparticles can recognize folate‐receptor‐expressing cancer cells. Compared to the nanoparticles without folate, the DOX‐loaded nanoparticles with folate yield a greater cellular uptake because of the folate‐receptor‐mediated endocytosis process, and, thus, higher cytotoxicity results. These multifunctional polymer core/shell nanoparticles may make a promising carrier to target drugs to cancer cells and release the drug molecules to the cytoplasm inside the cells.  相似文献   

20.
The effective transfer of strong electromagnetic field from the gold core through the coating shell represents the most significant challenge for the applications of plasmonic nanoparticles. This study applies a one‐step arc discharge method to synthesize graphitic carbon‐encapsulated gold nanoparticles (Au@G NPs) functionalized with amino groups uniformly via adding NH3 into He background gas. By tailoring the coating shell into few‐layered graphene, a strong localized surface plasmon resonance (LSPR) absorption band is achieved. The NH3 introduces H radicals to strengthen the LSPR characteristic by etching the coating graphitic shell, as well as provides dissociated NH or NH2 species to functionalize the surfaces with amino groups. With an LSPR‐based colorimetric method, it is demonstrated that trace Cu2+ ions can be detected rapidly with excellent sensitivity (as low as 10 × 10‐9m linearly) and selectivity against other metal ions (Na+, K+, Mg2+, Ca2+, Co2+, Fe2+, Cd2+, Pb2+, and Hg2+ ions) by amino‐functionalized Au@G NPs in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号