首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of single‐walled carbon nanotubes (SWNTs) with specific chirality and diameters is critical for achieving optimum performance of SWNTs in various applications. A water‐soluble π‐conjugated polymer, poly[(m‐phenyleneethynylene)‐alt‐(p‐phenyleneethynylene)], 3 , is found to exhibit high selectivity in dispersing SWNT (6,5). The polymer's ability to sort out SWNT (6,5) appears to be related to the carbon–carbon triple bond, whose free rotation allows a unique assembly of chromophores in a helical conformation. The observation is consistently supported by fluorescence, Raman, and UV‐vis‐NIR absorption spectra. The intriguing selectivity of 3 to SWNT (6,5), however, is not observed for the vinylene analogue polymer 1 , showing that the carbon–carbon triple bond could play a unique role in sorting out a specific SWNT. The observed selectivity from 3 could be attributed to a combination of the helical cavity size restrain and electronic interaction associated with the local chromophore arrangement. This strategy could be expanded for efficient SWNT sorting when the helical conformation is further finely tuned.  相似文献   

2.
3.
Fully conjugated block copolymers have emerged as promising materials that combine semiconducting properties with the ability to self‐assemble at the nanoscale. The convergence of these two features has tremendous implications for a number of fundamental molecular assembly and transport questions, while also offering unique advantages for a variety of applications. For example, a nanostructured active layer in organic photovoltaic (OPV) devices may provide for efficient charge separation while simultaneously affording continuous, unimpeded pathways for charge carriers to migrate to their respective electrodes within each individual microphase. This review details the recent progress made in the preparation and application of fully conjugated block copolymers and serves as a comprehensive reference for the materials that have been reported in the literature to date. Focus is placed on fully conjugated block copolymers prepared using chemistries that are relevant to high‐performance polymers in organic electronics research, for example Stille, Suzuki–Miyaura, and Yamamoto coupling.  相似文献   

4.
要发挥碳纳米管的优异性能,如何均匀分散碳纳米管是首先要解决的关键性问题。通过研究碳纳米管的团聚体形态,看出碳纳米管团聚体为一维纳米线团聚态,比普通颗粒粉体的零维团聚态更复杂。碳纳米管分散方法大体上分为物理法与化学法两大类,对比研究碳纳米管的各种分散方法,分析碳纳米管的分散机理,提出了均匀分散碳纳米管要满足3个必要条件:打散碳纳米管团聚体、剪断长碳纳米管、保持碳纳米管分散状态。剪切挤出分散法可以较好地满足这3个条件,制备出均匀分散的碳纳米管复合粉体。  相似文献   

5.
6.
7.
以多壁碳纳米管为原料,添加十二烷基苯磺酸钠进行表面活化,并溶于乙醇中,用超声震荡法分散多壁碳纳米管,采用扫描电镜(SEM)对其进行粒子表征。结果表明,运用超声振荡法分散的多壁碳纳米管分散情况良好,碳纳米管直径在30--50nm之间,能够达到较好的分散效果。  相似文献   

8.
9.
Low‐bandgap diketopyrrolopyrrole (DPP)‐based polymers are used for the selective dispersion of semiconducting single‐walled carbon nanotubes (s‐SWCNTs). Through rational molecular design to tune the polymer–SWCNT interactions, highly selective dispersions of s‐SWCNTs with diameters mainly around 1.5 nm are achieved. The influences of the polymer alkyl side‐chain substitution (i.e., branched vs linear side chains) on the dispersing yield and selectivity of s‐SWCNTs are investigated. Introducing linear alkyl side chains allows increased polymer–SWCNT interactions through close π–π stacking and improved C–H–π interactions. This work demonstrates that polymer side‐chain engineering is an effective method to modulate the polymer–SWCNT interactions and thereby affecting both critical parameters in dispersing yield and selectivity. Using these sorted s‐SWCNTs, high‐performance SWCNT network thin‐film transistors are fabricated. The solution‐deposited s‐SWCNT transistors yield simultaneously high mobilities of 41.2 cm2 V?1 s?1 and high on/off ratios of greater than 104. In summary, low‐bandgap DPP donor–acceptor polymers are a promising class of polymers for selective dispersion of large‐diameter s‐SWCNTs.  相似文献   

10.
陈改荣  苗郁  杜全周  王艳博 《材料导报》2016,30(10):77-79, 104
采取硝酸-盐酸回流法对碳纳米管进行纯化,以超声振荡为手段,探究了在乙醇溶液中表面活性剂种类、浓度、复配方法及超声振荡时间等因素对碳纳米管在环氧树脂基体中的分散性能的影响。通过碳纳米管环氧树脂悬浮液的稳定保存时间来观察其分散性能。结果表明,阴离子型表面活性剂十二烷基苯磺酸钠(SDBS)分散效果最好。  相似文献   

11.
12.
13.
采用催化热解方法分别 制备出碳纳米管和镓掺杂碳纳米管, 并利用丝网印刷工艺将其制备成纳米管薄膜. 对此薄膜进行低场致电子发射测试表明, 碳纳米管和镓掺杂纳米管开启电场分别为2.22和1.0V/μm, 当外加电场为2.4V/μm, 碳纳米管发射电流密度为400μA/cm2, 镓掺杂纳米管发射电流密度为4000μA/cm2. 可见镓掺杂碳纳米管的场发射性能优于同样条件下未掺杂时的碳纳米管. 对镓掺杂纳米管场发射机理进行了探讨.  相似文献   

14.
化学处理对碳纳米管分散性能的影响   总被引:11,自引:0,他引:11  
江琳沁  高濂 《无机材料学报》2003,18(5):1135-1138
采用混酸氧化法对碳纳米管进行化学处理,制备了分散均匀的稳定的碳管悬浮液.FTIR研究表明:经化学处理后的碳管表面带上了羧基及羟基等基团. TEM显示处理后的碳管缠绕程度明显降低. ζ电位测试结果表明,处理后碳管表面酸根离子的离解增大了碳管表面的负电荷,增强了悬浮液的稳定性.通过测定有效粒径及沉降百分比进一步证实了处理后的碳管悬浮液具有更高的分散性及稳定性.  相似文献   

15.
16.
17.
陈北明  杨德安 《材料导报》2007,21(F05):99-101
综述了碳纳米管/聚合物复合材料制备过程中碳纳米管预先分散所使用的方法。为实现碳纳米管在聚合物中的分散,首先要求加入的碳纳米管本身具备足够的分散度。碳纳米管的分散方法主要有:表面化学修饰、分散剂分散、超声分散、机械分散、溶剂分散。  相似文献   

18.
采用催化裂解法,以二氯苯为碳源,二茂铁为催化剂,制取了薄壁碳纳米管.引入多壁碳纳米管的薄壁指数?来表征多壁碳纳米管的薄壁程度.研究了氢气流量、反应温度和催化剂浓度对薄壁碳纳米管制取的影响.确定了制取薄壁碳纳米管的优化参数:反应温度为850℃,催化剂浓度为0.06g/ml,氩气流量为500ml/min,氢气流量为200ml/min,反应溶液进给量为0.012ml/min.制备出薄壁指数达5.6的大中空薄壁碳纳米管.  相似文献   

19.
Materials composed of well‐defined mesoscale building blocks are ubiquitous in nature, with noted ability to assemble into hierarchical structures possessing exceptional physical and mechanical properties. Fabrication of similar synthetic mesoscale structures will offer opportunities for precise conformational tuning toward advantageous bulk properties, such as increased toughness or elastic modulus. This requires new materials designs to be discovered to impart such structural control. Here, the preparation of mesoscale polymers is achieved by solution fabrication of functional polymers containing photoinduced chemical triggers. Subsequent photopatterning affords mesoscale block copolymers composed of distinct segments of alternating chemical composition. When dispersed in appropriate solvents, selected segments form helices to generate architectures resembling block copolymers, but on an optically observable size scale. This approach provides a platform for producing mesoscale geometries with structural control and potential for driving materials assembly comparable to examples found in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号