首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决低透气性煤层高效抽采的难题,采用穿层孔吞吐压裂水力强化改善煤层透气性。分析了水力强化工艺穿层孔瓦斯运移产出过程,研究了水力强化对硬煤储层和软煤层中瓦斯渗透率的影响,分析了水力强化对煤体渗透率的作用及增透机理,并进行了现场效果应用。结果表明:穿层孔吞吐压裂技术提高了煤层透气性,形成瓦斯产出通道,在硬煤中水力强化可在顶底板形成"虚拟储层",瓦斯以渗流为主,软煤中以扩散运移为主;吞吐压裂水力强化通过形成洞穴和裂隙,增加煤层渗透性,减少瓦斯抽采流量衰减系数,提高瓦斯抽采效率。现场实施吞吐压裂水力措施后抽采纯量由14.8 m3增加至31.9~42.8 m3;抽采体积分数由14.1%增加至73.9%~77.5%,该技术具有较高的实际推广应用价值。  相似文献   

2.
针对单一低渗松软煤层,采取顶板虚拟储层水力压裂的方式可实现煤层增透。利用多场耦合煤层气开采物理模拟试验系统,开展了顶板虚拟储层水力压裂物理模拟试验。试验结果表明:通过在顶板及煤层中布置压力传感器,可以较好地监测水力压裂过程中煤层及顶板虚拟储层中裂缝的开裂扩展演化过程;顶板虚拟储层水力压裂一方面对煤层产生卸压作用,另一方面压裂裂缝沿钻孔向煤层方向扩展并形成裂隙缝网,煤层瓦斯可通过裂隙缝网扩展至顶板虚拟储层钻孔,增加了瓦斯渗流通道,有效提高了煤层瓦斯抽采效率。  相似文献   

3.
为了改善煤层透气性,提高煤层瓦斯抽采钻孔的抽采量,在梁北煤矿进行水力压裂试验,对水力压裂增透试验效果进行了分析。试验证明:对煤层进行水力压裂后,煤层透气性增加,单孔抽采瓦斯纯量最高为原来的51.5倍,钻场平均抽采瓦斯纯量最高为原来的10.28倍。  相似文献   

4.
赵保平  赵红星 《煤》2015,(2):28-31
针对马堡矿15号煤层瓦斯含量高、煤层透气性差、钻孔施工量大、瓦斯抽采率低等问题,提出以15108综放工作面为试验地点进行水力压裂增透试验来增加煤层透气性。通过对水力压裂增透技术原理的研究,分析了水力压裂试验流程,确定了试验设备仪器、压裂工艺参数,最终成功完成了水力压裂试验。并通过对注水压力的变化分析和试验前后抽采效果的对比,总结得出通过对煤层进行水力压裂,可大幅度提高煤层透气性和钻孔瓦斯抽采效果、增加煤层瓦斯抽采半径、缩短抽采周期,有效解决马堡矿瓦斯治理难题。  相似文献   

5.
水力压裂增透是提高煤层瓦斯抽采效率的常用措施之一,在常规水力压裂原理的基础上,提出了循环往复式水力压裂作用于煤层的增透技术,在红阳三矿705回采工作面进行了顺煤层循环往复式水力压裂现场试验。试验结果表明,循环往复式水力压裂与常规水力压裂相比,压裂影响范围及透气性等均得到大幅度提升,同时瓦斯抽采浓度及纯量均得到提高,压裂增透效果改善明显,与原始煤层及常规压裂的瓦斯抽采方法相比,循环往复式水力压裂措施减少了瓦斯抽采钻孔数量,提高了瓦斯抽采纯量总量,提升了瓦斯抽采效率。循环往复式水力压裂技术可以作为改善常规压裂增透效果的一种方法。  相似文献   

6.
针对王行庄矿二1煤层透气性、瓦斯预抽率低等问题,提出了水力压裂增透技术,分析了水力压裂增加煤层透气性机理,确定了水力压裂工艺及参数,并在二1煤层11091运输巷进行了水力压裂技术试验。结果表明:实施水力压裂后,煤层瓦斯平均抽采浓度提高了5.3倍,瓦斯抽采量提高了6.1倍,提高煤层透气性和瓦斯抽采率的效果较理想。  相似文献   

7.
针对低透气性碎软煤层普遍存在的瓦斯抽采效果差的技术问题,研究了多点定向长钻孔水力压裂高效瓦斯抽采技术,探讨了碎软低透气性煤层的水力压裂增透机理;在施工多点定向长钻孔、井下水力压裂快速封孔装备的基础上,进行了煤矿井下水力压裂现场试验;分析了压裂过程中参数变化规律,提出了水力压裂影响范围、压裂效果和瓦斯抽采效果评价方法,并进行了效果考察。结果表明:该技术提高了井下水力压裂封孔效率和施工质量,改善了试验区域的煤储层参数,水分提高了4.31倍,透气性提高了4.88倍;水力压裂影响范围沿钻孔径向影响范围50~60 m;沿着钻孔轴向最大影响范围约40 m。压裂后连续抽采233 d累计抽采纯瓦斯量为25.14×10~4m~3,日最高抽采量3 077.41 m~3/d,瓦斯含量降低了34.67%。  相似文献   

8.
李磊 《煤炭技术》2019,(3):106-108
针对绿塘煤矿井田区域可采煤层瓦斯含量大、压力高,透气系数低带来煤层瓦斯抽采困难等技术难题,设计采用BZW-200型水力压裂系统进行水力压裂试验,考察压裂前后煤层含水率、瓦斯抽采浓度、瓦斯抽采纯量等参数来检验压裂试验的效果并优化钻孔布置。应用研究表明:水力压裂对于该矿6_中煤层具有显著增透作用,透气性系数提高约25倍;水力压裂试验明显改善了煤层瓦斯基础参数;实施水力压裂后煤层瓦斯抽采浓度及抽采量显著增大,能有效提高瓦斯抽采效率,保证工作面安全回采。  相似文献   

9.
为提高低透气性"三软"突出煤层的瓦斯抽采量,实现抽采消突的目的,在义安矿进行水力压裂增透技术现场试验,对水力压裂的应用效果进行了现场考察。结果表明:对煤层进行水力压裂后可有效提高钻孔瓦斯抽采效果和煤层的透气性,压裂后钻孔瓦斯抽放浓度及纯流量均提高5倍以上,水力压裂显著的泄压增透作用大大提高了钻孔施工进度,缓解了工作面接替紧张的局面。  相似文献   

10.
陈俊辉 《煤》2012,(1):9-11,21
为了提高Ⅲ和Ⅳ类煤的透气性,在渝阳矿进行了基于虚拟储层的穿层钻孔水力压裂技术研究。研究表明:对Ⅲ和Ⅳ类煤使用虚拟储层增透技术后,可有效的改善煤层透气性,提高钻孔的抽采量,压裂前后钻孔日平均瓦斯抽采量提高了25倍,透气性系数提高了110倍,水力压裂钻孔的影响范围可达60 m以上。  相似文献   

11.
水力压裂增透技术在瓦斯抽采中的应用   总被引:13,自引:2,他引:11  
为了提高低透气性突出煤层的瓦斯抽采量,达到抽采消突的目的,在李子垭南二井进行了水力压裂增透技术现场试验,对水力压裂技术在高瓦斯、低透气性突出煤层中的运用效果进行了试验考察,并分析了水力压裂煤体致裂增透机理.试验结果表明:对煤层进行钻孔水力压裂后可有效提高煤层的透气性和钻孔瓦斯抽采效果,压裂前后钻孔瓦斯自然流量提高127.6倍以上,水力压裂钻孔在煤层走向方向上的影响半径可达50m以上.  相似文献   

12.
针对高瓦斯松软破碎煤层通透性差,导致瓦斯抽采效率低这一问题,以王坡煤业3号煤为工程背景,进行了长钻孔水力压裂技术研究,分析了水力压裂机理过程,并在3301底抽巷进行了水力压裂施工,通过监测压裂过程水压变化情况,对水力压裂过程进行了详细跟踪,最终通过对比压裂前后煤层物理参数变化以及瓦斯抽采效果,得出了长钻孔水力压裂技术对松软破碎煤层的增透效果显著,瓦斯抽采效率得到了显著提高。  相似文献   

13.
高瓦斯、低透气性是我国大多数煤层的特点,水力压裂技术在煤层卸压增透方面有着独特的优势。介绍了水力压裂技术的原理及工艺流程,分析了水力压裂的作用效果,并结合山西某矿2106工作面水力压裂技术的应用,分析水力压裂对煤层钻孔瓦斯抽采体积分数及瓦斯抽采量的影响。结果表明,水力压裂明显提高了钻孔瓦斯抽采体积分数和瓦斯抽采量,增透效果显著。  相似文献   

14.
为了有效提高瓦斯抽采效果,对三2煤层瓦斯地质条件进行了研究,采用水力压裂技术,设计了本煤层及胶带运输巷水力压裂试验孔,建立了水力压裂抽放系统。研究结果表明,通过对煤层的注水致裂,增加了煤层渗透率,提高了抽采量,降低了煤与瓦斯突出危险性。  相似文献   

15.
左文强 《山东煤炭科技》2023,(5):104-106+109
为提高中兴煤矿松软煤层透气性,有效解决传统钻孔瓦斯抽采难题,通过现场工业试验及瓦斯抽采效果对比相结合的方法,对2号松软煤层水力压裂增透技术及工艺进行了研究。结果表明:水力压裂方案实施后,煤层透气性提高明显,瓦斯抽采浓度、流量分别增幅3.6倍、2.7倍,抽采巷风排瓦斯量平均降低0.68m3/min,减幅27%,水力压裂可有效提升煤层瓦斯抽采效率。  相似文献   

16.
为了解决采煤工作面顺层钻孔消突效果不均匀、效率较低等问题,以淮南地区谢桥煤矿低透气性煤层为试验对象,采用顺层钻孔水力压裂技术对煤层进行增透,以提高瓦斯治理效率。介绍了顺层钻孔区域防突措施设计方案,对水力压裂半径进行了考察;开展了水力压裂钻孔及瓦斯抽采钻孔设计,以及注水压力、注水量和保压时间等水力压裂工艺参数试验。水力压裂和未压裂顺层钻孔瓦斯抽采效果对比表明,水力压裂后钻孔抽采平均瓦斯浓度提高54%,平均单孔抽采瓦斯纯流量提高280%,抽采达标时间缩短了1个月;防突效果检验指标均达标,工作面回采期间未出现瓦斯浓度超限现象。  相似文献   

17.
瓦斯抽采是解决煤矿瓦斯灾害事故的主要方法,而煤层瓦斯渗透性是决定瓦斯抽采效果的重要影响因素。对于低渗透性高瓦斯煤层,采用水力强化抽采技术可以有效增加煤层瓦斯渗透性,从而提高瓦斯抽采效率。本文分析了水力割缝、水力压裂瓦斯强化抽采技术的原理及工艺。探讨了利用高压水流冲击煤体的水力割缝和水力压裂强化瓦斯抽采方法的可行性。  相似文献   

18.
结合松树矿现场实际情况,详细介绍了水力压裂工艺,并对水力压裂技术提高瓦斯抽采效率进行了研究。研究表明:水力压裂技术可以显著提高瓦斯抽采效率,并且可以有效地延长瓦斯抽采时间,对突出煤层起到了很好的消突效果,也为今后的瓦斯抽放积累了宝贵的经验。  相似文献   

19.
为了提高井下低透气性煤层瓦斯抽采钻孔瓦斯抽采效果,开发了适合中等偏硬低透煤层裸眼钻孔高压稳定封孔装备,采用了本煤层定向长钻孔整体水力压裂增透技术,分析了本煤层定向长钻孔水力压裂增透机理,并进行了水力压裂强化增透试验。根据压裂施工过程中压裂参数变化规律,利用压裂前后煤层全水分和钻孔瓦斯参数变化对比,综合考察和评价了水力压裂增透效果和影响范围。研究表明:压裂过程中最大注水压力24.6MPa,发生多次明显压降,最大压降5.2MPa。水力压裂增透后,煤层瓦斯日抽采纯量提高了12.70倍,百米钻孔瓦斯抽采量提高了2.67倍,压裂最大影响半径达到了 38m,平均超过30m,提高了瓦斯抽采效率。  相似文献   

20.
为了对水力压裂后的瓦斯抽采效果进行研究,将PFC2D数值模拟与COMSOL数值模拟结合运用,提出了一种几何模型图像像素级处理方法,该方法将PFC2D水力压裂后的裂隙几何模型导入到COMSOL软件中,完成了2个数值模拟软件之间的结合,实现了对水力压裂煤层进行瓦斯抽采的数值模拟。研究结果表明:40 MPa与20 MPa注水压力相比,注水压裂的范围较大,产生的裂隙数量较多,裂隙扩展范围较大,压裂效果好;且相同抽采时间下,40 MPa注水压裂的煤层瓦斯抽采范围和抽采流量大,水力压裂可以提高煤层的瓦斯抽采效果,与实际工程应用效果相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号