首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
An electroactive polyazomethine is prepared from a solution processable 2,5‐diaminothiophene derivative and 4,4′‐triphenylamine dialdehyde by spray‐coating the monomers on substrates, including indium tin oxide (ITO) coated glass and native glass slides. The conjugated polymer was rapidly formed in situ by heating the substrates at 120 °C for 30 min in an acid saturated atmosphere. The resulting immobilized polymer is easily purified by rinsing the substrate with dichloromethane. The on‐substrate polymerization is tolerant towards large stoichiometry imbalances of the comonomers, unlike solution step‐growth polymerization. The resulting polyazomethine is electroactive and it can be switched reversibly between its neutral and oxidized states both electrochemically and chemically without degradation. A transmissive electrochromic device is fabricated from the immobilized polyazomethine on an ITO electrode. The resulting device is successfully cycled between its oxidized (dark blue) and neutral (cyan/light green) states with applied biases of +3.2 and ‐1.5 V under ambient conditions without significant color fatigue or polymer degradation. The coloration efficiency of the oxidized state at 690 nm is 102 cm2 C?1.  相似文献   

2.
A solution‐processable electrochromic (EC) polymer, poly(4,4‐dioctyl‐cyclopenta[2,1‐b:3,4‐b′]‐dithiophene) (PDOCPDT) is prepared by means of chemical oxidative polymerization of the corresponding monomer. The UV‐vis spectrum of the spin‐coated PDOCPDT film displays an absorption maximum of 580 nm. Although the polymer is deep blue in its neutral state, it turns to transparent bluish after being oxidized. PDOCPDT film (thickness 120 nm) exhibits high coloration efficiency (CE)—as high as 932 C cm–2 at 580 nm, low response time (0.75 s), high optical density (0.75 at 580 nm), and high‐level stability for long term switch (it switches repetitively 1000 times with less than 8 % contrast loss). The electrochemical stability and redox potentials of PDOCPDT films are independent of film thickness (50–180 nm) and active area (up to 2 cm × 2 cm). Nevertheless, optical contrast increases as the film thickness increases, although the CE and response time changes irregularly with the film thickness. The good EC properties combined with the easy film fabrication process make PDOCPDT a notable candidate for application in EC devices. (ECDs) A simple transmissive‐type ECD with good CE using PDOCPDT film as an active layer is also demonstrated.  相似文献   

3.
The research on transparent conductive electrodes is in rapid ascent in order to respond to the requests of novel optoelectronic devices. The synergic coupling of silver nanowires (AgNWs) and high‐quality solution‐processable exfoliated graphene (EG) enables an efficient transparent conductor with low‐surface roughness of 4.6 nm, low sheet resistance of 13.7 Ω sq?1 at high transmittance, and superior mechanical and chemical stabilities. The developed AgNWs–EG films are versatile for a wide variety of optoelectronics. As an example, when used as a bottom electrode in organic solar cell and polymer light‐emitting diode, the devices exhibit a power conversion efficiency of 6.6% and an external quantum efficiency of 4.4%, respectively, comparable to their commercial indium tin oxide counterparts.  相似文献   

4.
This paper presents a melt‐processable multifunctional nanocomposite material that shows highly controlled tunability in refractive index, glass transition temperature (Tg) and energy bandgap. ZnO quantum dots tethered with polymer brushes are melt‐blended into the matrix polymer, giving rise to multiple functionalities in the nanocomposites. Brush–matrix polymer interactions are important in determining the ability of polymer‐grafted nanoparticles to disperse in a polymer melt, of which graft density (σ), brush (N) and matrix (P) polymer lengths are the critical parameters. It is generally assumed that long polymer brushes (N > P) and an optimum graft density are necessary to achieve a good dispersion. Here it is demonstrated that nanoparticles tethered with short, dense and polydisperse polymer brushes via radical copolymerization can exhibit a stable, fine dispersion in the polymer melt. The quality of the dispersion of the nanoparticles is characterized by measuring physical properties that are sensitive to the state of the dispersion. This synthesis method presents a general approach for the inexpensive and high‐throughput fabrication of high quality, melt‐blendable nanocomposites that incorporate functional nanoparticles, paving the way for wider application of high performance nanocomposites.  相似文献   

5.
The development of new flexible and stretchable sensors addresses the demands of upcoming application fields like internet‐of‐things, soft robotics, and health/structure monitoring. However, finding a reliable and robust power source to operate these devices, particularly in off‐the‐grid, maintenance‐free applications, still poses a great challenge. The exploitation of ubiquitous temperature gradients, as the source of energy, can become a practical solution, since the recent discovery of the outstanding thermoelectric properties of a conductive polymer, poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS). Unfortunately the use of PEDOT:PSS is currently constrained by its brittleness and limited processability. Herein, PEDOT:PSS is blended with a commercial elastomeric polyurethane (Lycra), to obtain tough and processable self‐standing films. A remarkable strain‐at‐break of ≈700% is achieved for blends with 90 wt% Lycra, after ethylene glycol treatment, without affecting the Seebeck voltage. For the first time the viability of these novel blends as stretchable self‐powered sensors is demonstrated.  相似文献   

6.
A multifunctional polymerizable ionic liquid, diallyldimethylammonium tetrafluoroborate (DADMA BF4), is used in a one‐pot synthesis of novel luminescent polymer‐nanoparticle composites. First, small monodisperse lanthanide fluoride nanoparticles are formed by microwave irradiation in the presence of Ln(OAc)3·xH2O (Ln = Gd, Eu, Tb; OAc = acetate) in the ionic liquid. The nanoparticles can be precipitated for structural characterization or kept in the solution, which yields after irradition by high intensity UV light colorless, processable polymer materials with good photophysical properties. Both green‐emitting Tb‐containing and red‐emitting Eu‐containing IL‐ polymers are described.  相似文献   

7.
The fabrication of stimulus‐responsive coatings that change both reflectivity and topography is hampered by the lack of easy processable, patternable, and programmable elastomers. Here, an easily applied reflective coating based on a semi‐interpenetrating polymer network composed of a liquid crystal elastomer and a liquid crystal network (>15 wt%) is reported. The reflective wavelength of these polysiloxane elastomer photonic coatings can be readily programed by the concentration of chiral reactive mesogen dopant that forms the network. The coatings show a fast and reversible decrease in reflection band intensity with increasing temperature, which can be tuned by the polymer network density. In addition, hierarchical surface relief structures are prepared, which can be reversibly changed with temperature.  相似文献   

8.
An interpenetrating polymer network (IPN) material with controllable nanoporosity is developed for applications such as chemical protection. The IPN material is based on a conducting polymer backbone consisting of thiophene and 3,4 ethylenedioxythiophene (EDOT) repeat units–poly(thiophene‐EDOT)–formed within a soft polyurethane support. The IPN demonstrates reversible, electrochemically switchable nanoporosity in the absence of standard liquid electrolyte, with the oxidized state being the open (high porosity) state and the reduced state being the closed (low porosity) state. The switching of the IPN between its oxidized (open) and reduced (closed) states is actuated using application of ±1.0 V. The variability in the IPN porosity, induced by the electrochemical switching, is revealed by large changes in water vapor diffusivity, as well as changes in the diffusivities of the chemical agent simulants chloroethyl ethyl sulfide (CEES) and methyl salicylate (MeS). The closed state of the IPN is able to decrease CEES diffusivity by ≈99% compared to expanded Teflon (ePTFE), while the open state allows high MVT rates comparable to ePTFE. The IPN's ability to allow high MVT under non‐threat conditions (open state) and high protection from agents under threat conditions (closed state) is a unique and desirable characteristic of this novel IPN material.  相似文献   

9.
Solvent‐processable ultrablack materials have obvious application convenience in many situations, such as absorbing coatings on large and complex surfaces. However, developing solvent‐processable ultrablack materials with high light‐absorption performance and wide absorption band remains a great challenge. In this article, carbon vesicles (CVs) are fabricated for solvent‐processable ultrablack coating. The fabrication process involves a templated co‐condensation of silica and resorcinol formaldehyde resin (RF resin), followed by carbonization and template removal. The resultant structure shows a very thin inner layer, a rough outer layer, as well as a nano‐porous interlayer. This structure introduces randomness and breaks the spherical symmetry of the common carbon hollow spheres. As a result, structural color due to inner‐particle interference is avoided. In addition, the as‐fabricated CVs show a wide‐band low reflectance because of its low carbon filling ratio and nanoscale scatterer size. The lowest reflectance reaches ≈0.10% at 360 nm, making it the darkest solvent‐processable ultrablack material ever reported. The symmetry‐breaking strategy presented here provides an efficient way for the design of solvent‐processable ultrablack materials.  相似文献   

10.
The use of solution‐processable electrically conducting films is imperative for realizing next‐generation flexible and wearable devices in a large‐scale and economically viable way. However, the conventional approach of simply complexing metallic nanoparticles with a polymeric medium leads to a tradeoff between electrical conductivity and material properties. To address this issue, in this study, a novel strategy is presented for fabricating all‐solution‐processable conducting films by means of metal/polyelectrolyte complexation to achieve controlled electrical percolation; this simultaneously imparts superior electrical conductivity and good mechanical properties. A polymeric matrix comprised of polyelectrolyte multilayers is first formed using layer‐by‐layer assembly, and then Ag nanoparticles are gradually synthesized and gradationally distributed inside the polymeric matrix by means of a subsequent procedure of repeated cationic exchange and reduction. During this process, electrical percolation between Ag nanoparticles and networking of electrical pathways is facilitated in the surface region of the complexed film, providing outstanding electrical conductivity only one order of magnitude less than that of metallic Ag. At the same time, the polymer‐rich underlying region imparts strong, yet compliant, binding characteristics to the upper Ag‐containing conducting region while allowing highly flexible mechanical deformations of bending and folding, which consequently makes the system outperform existing materials.  相似文献   

11.
The charge transportation in poly(3‐butylthiophene) (P3BT)/insulating polymer composites is studied both microscopically and macroscopically. The increased mobility of free charge carriers, in particular hole mobility, contributes to the enhanced electrical conductivity of this semiconductor/insulator composite. The conductivity origin of the composite, as revealed by conductive‐atomic force microscopy (C‐AFM), comes mainly from the P3BT network, whose carrier mobility has been improved as a result of reduced activation energy for charge transportation upon forming an interface with the insulating matrix. Both the huge interfacial area and interconnected conductive component are morphologically required for the enhanced electrical property of the composite. An increased size of the P3BT domains, which correspondingly reduces the interfacial area between the two components, ruins the enhancement. This study clarifies the mechanism of the higher electrical properties achieved in a semiconducting polymer upon blending with an insulating polymer, which will further promote the development of these low‐cost, easily processable, and environmentally stable composites.  相似文献   

12.
A new and facile strategy for the development of photonic materials is presented that fufills the conditions of being efficient, stable, and tunable laser emitters over the visible region of spectrum, with the possibility of being easily processable and cost‐effective. This approach uses poly(methyl methacrylate) (PMMA) as a host for new dyes with improved efficiency and photostability synthesized. Using a simple protocol, fluorine atoms in the commercial (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene) (F‐BODIPY) by carboxylate groups. The new O‐BODIPYs exhibit enhanced optical properties and laser behavior both in the liquid and solid phases compared to their commercial analogues. Lasing efficiencies up to 2.6 times higher than those recorded for the commercial dyes are registered with high photostabilities since the laser output remain at 80% of the initial value after 100 000 pump pulses in the same position of the sample at a repetition rate of 30 Hz; the corresponding commercial dye entirely loses its laser action after only 12 000 pump pulses. Distributed feedback laser emission is demonstrated with organic films incorporating new O‐BODIPYs deposited onto quartz substrates engraved with appropriated periodical structures. These dyes exhibit laser thresholds up to two times lower than those of the corresponding parent dyes with lasing intensities up to one order of magnitude higher.  相似文献   

13.
Silica hollow nanosphere colloidal crystals feature a uniquely well‐defined structure across multiple length scales. This contribution elucidates the intricate interplay between structure and atmosphere on the effective thermal diffusivity as well as the effective thermal conductivity. Using silica hollow sphere assemblies, one can independently alter the particle geometry, the density, the packing symmetry, and the interparticle bonding strength to fabricate materials with an ultralow thermal conductivity. Whereas the thermal diffusivity decreases with increasing shell thickness, the thermal conductivity behaves inversely. However, the geometry of the colloidal particles is not the only decisive parameter for thermal insulation. By a combination of reduced packing symmetry and interparticle bonding strength, the thermal conductivity is lowered by additionally 70% down to only 8 mW m?1 K?1 in vacuum. The contribution of gaseous transport, even in these tiny pores (<200 nm), leads to minimum thermal conductivities of ≈35 and ≈45 mW m?1 K?1 for air and helium atmosphere, respectively. The influence of the individual contributions of the solid and (open‐ and closed‐pore) gaseous conductions is further clarified by using finite element modeling. Consequently, these particulate materials can be considered as a non‐flammable and dispersion‐processable alternative to commercial polymer foams.  相似文献   

14.
Conductive photodefinable polydimethylsiloxane (PDMS) composites that provide both high electrical conductivity and photopatternability have been developed. The photosensitive composite materials, which consist of a photosensitive component, a conductive filler, and a PDMS pre‐polymer, can be used as a negative photoresist or a positive photoresist with an additional curing agent. A standard photolithographic approach has been used to fabricate conductive elastomeric microstructures. Feature sizes of 60 µm in the positive photoresist and 10 µm in the negative photoresist have been successfully achieved. Moreover, as the conductive filler, silver powders significantly improve the electrical conductivity of the PDMS polymer, but also provide enhanced mechanical and thermal properties as well as interesting biological properties. The combined electrical, mechanical, thermal, and biological properties along with photopatternability make the PDMS‐Ag composite an excellent processable and structural material for various microfabrication applications.  相似文献   

15.
A new photoelectrochromic device (PECD) is presented in this work proposing the combination of a WO3‐based electrochromic device (ECD) and a polymer‐based dye‐sensitized solar cell (DSSC). In the newly designed architecture, a photocurable polymeric membrane is employed as quasi‐solid electrolyte for both the ECD and the DSSC. In addition, a photocurable fluoropolymeric system is incorporated as solution‐processable external protective thin coating film with easy‐cleaning and UV‐shielding functionalities. Such new polymer‐based device assembly is characterized by excellent device operation with improved photocoloration efficiency and switching ability compared with analogous PECDs based on standard liquid electrolyte systems. In addition, long‐term (>2100 h) stability tests under continuous exposure to real outdoor conditions reveal the remarkable performance stability of this new quasi‐solid PECD system, attributed to the protective action of the photocurable fluorinated coating that effectively prevents photochemical and physical degradation of the PECD components during operation. This first example of quasi‐solid PECD systems paves the way for a new generation of thermally, electrochemically, and photochemically stable polymer‐based PECDs, and provides for the first time a clear demonstration of their true potential as readily upscalable smart window components for energy‐saving buildings.  相似文献   

16.
Here, we report on the dual functionality of tungsten oxide for application as an efficient electron and hole injection/transport layer in organic light‐emitting diodes (OLEDs). We demonstrate hybrid polymer light‐emitting diodes (Hy‐PLEDs), based on a polyfluorene copolymer, by inserting a very thin layer of a partially reduced tungsten oxide, WO2.5, at the polymer/Al cathode interface to serve as an electron injection and transport layer. Significantly improved current densities, luminances, and luminous efficiencies were achieved, primarily as a result of improved electron injection at the interface with Al and transport to the lowest unoccupied molecular orbital (LUMO) of the polymer, with a corresponding lowering of the device driving voltage. Using a combination of optical absorption, ultraviolet spectoscopy, X‐ray photoelectron spectroscopy, and photovoltaic open circuit voltage measurements, we demonstrate that partial reduction of the WO3 to WO2.5 results in the appearance of new gap states just below the conduction band edge in the previously forbidden gap. The new gap states are proposed to act as a reservoir of donor electrons for enhanced injection and transport to the polymer LUMO and decrease the effective cathode workfunction. Moreover, when a thin tungsten oxide film in its fully oxidized state (WO3) is inserted at the ITO anode/polymer interface, further improvement in device characteristics was achieved. Since both fully oxidized and partially reduced tungsten oxide layers can be deposited in the same chamber with well controlled morphology, this work paves the way for the facile fabrication of efficient and stable Hy‐OLEDs with excellent reproducibility.  相似文献   

17.
A chemically coupled polymer layer is introduced onto inorganic oxide dielectrics from a dilute chlorosilane‐terminated polystyrene (PS) solution. As a result of this surface modification, hydrophilic‐oxide dielectrics gain hydrophobic, physicochemically stable properties. On such PS‐coupled SiO2 or AlOx dielectrics, various vacuum‐ and solution‐processable organic semiconductors can develop highly ordered crystalline structures that provide higher field‐effect mobilities (μFETs) than other surface‐modified systems, and negligible hysteresis in organic field‐effect transistors (OFETs). In particular, the use of PS‐coupled AlOx nanodielectrics enables a solution‐processable triethylsilylethynyl anthradithiophene OFET to operate with μFET ~ 1.26 cm2 V?1 s?1 at a gate voltage below –1 V. In addition, a complementary metal‐oxide semiconductor‐like organic inverter with a high voltage gain of approximately 32 was successfully fabricated on a PS‐coupled SiO2 dielectric.  相似文献   

18.
Flexible multi‐colored electrochromic and volatile memory devices are fabricated from a solution‐processable electroactive aromatic polyimide with starburst triarylamine unit. The polyimide prepared by the chemical imidization was highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures. The polyimide with strong electron‐donating capability possesses static random access memory behavior and longer retention time than other 6FDA‐based polyimides. The differences of the highest‐occupied and lowest unoccupied molecular orbital levels among these polyimides with different electron‐donating moieties are investigated and the effect on the memory behavior is demonstrated. The polymer film shows reversible electrochemical oxidation and electrochromism with high contrast ratio both in the visible range and near‐infrared region, which also exhibits high coloration efficiency, low switching time, and the outstanding stability for long‐term electrochromic operation. The highly stable electrochromism and interesting volatile memory performance are promising properties for the practical flexible electronics applications in the future.  相似文献   

19.
Solution‐processable organic semiconductors have been investigated not only for flexible and large‐area electronics but also in the field of biotechnology. In this paper, we report the design and fabrication of biosensors based on completely organic thin‐film transistors (OTFTs). The active material of the OTFTs is poly(9,9‐dioctylfluorene‐co‐bithiophene) (F8T2) polymer functionalized with biotin hydrazide. The relationship between the chemoresistive change and the binding of avidin‐biotin moieties in the polymer is observed in the output and on/off characteristics of the OTFTs. The exposure of the OTFTs to avidin causes a lowering of ID at VD = ‐40 V and VG = ‐40 V of nearly five orders of magnitude.  相似文献   

20.
A series of solution‐processable and strongly visible‐light absorbing polyplatinynes containing oligothienyl–fluorene ring hybrids were synthesized and characterized. These rigid‐rod organometallic materials are soluble in polar organic solvents and show intense absorptions in the visible spectral region, rendering them excellent candidates for bulk heterojunction polymer solar cells. The photovoltaic behavior depends significantly on the number of thienyl rings along the polymer chain, and some of these polymer solar cells show high power conversion efficiencies (PCEs) of up to 2.9% and a peak external quantum efficiency to 83% under AM1.5 simulated solar illumination. The effect of oligothienyl chain length on improving the polymer solar cell efficiency and on their optical and charge transport properties is elucidated in detail. At the same blend ratio of 1:5, the light‐harvesting capability and PCE increase markedly with increasing number of thienyl rings. The power dependencies of the solar cell parameters (including the short‐circuit current density, open‐circuit voltage, fill‐factor, and PCE) were also examined. The present work opens up an attractive avenue to developing conjugated metallopolymers with broad and strong solar energy absorptions and tunable solar cell efficiency and supports the potential of metalated conjugated polymers for efficient power generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号