首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The thermotropic and lyotropic liquid‐crystalline (LC) phases of the ionic self‐assembled complex N,N′,‐bis(2‐(trimethylammonium)ethylene)‐perylene‐3,4,9,10‐tetracarboxyldiimide‐bis(2‐ethylhexyl)sulfosuccinate have been studied using polarizing microscopy, differential scanning calorimetry (DSC), and X‐ray scattering techniques. A two‐dimensional (2D) columnar thermotropic LC phase with π–π stacking of the perylene tectonic units and a lyotropic LC phase in dimethyl sulfoxide (DMSO) have been found. Different techniques have been applied to align both systems and included: surface interactions, electric and magnetic fields, shear force, and controlled domain formation at the LC–isotropic phase‐transition front (PTF). Characterization of the alignment in films has been performed using polarized UV‐vis spectroscopy and transmission null‐ellipsometry. The best results have been obtained for alignment of the material in a lyotropic phase by controlled domain formation at the PTF of the LC–isotropic phase transition. In this case, a dichroic ratio of 18 is achieved with packing of columns of perylenediimide tectons perpendicular to the PTF.  相似文献   

2.
This account highlights recent progress towards understanding the complex hierarchical levels of solid‐state structure in a prototypical helical hairy‐rod polyfluorene, poly[9,9‐bis(2‐ethylhexyl)fluorene‐2,7‐diyl] (or PF2/6). This branched‐side‐chain containing polyfluorene undergoes a systematic intermolecular self‐assembly and liquid‐crystalline phase behavior in combination with uniaxial and biaxial alignment. The latter processes yield full three‐dimensional orientation of the crystallites and polymer chains. Also reviewed are the impact of the molecular structure and phase behavior on surface morphology, anisotropic film formation, and, ultimately, the overall impact of these physical attributes on optical constants. This particular polyfluorene also represents a model system for demonstrating the applicability of mean‐field theory in detailing the self‐organization of aligned hairy‐rod block‐copolymer systems. These results of PF2/6 are compared to those of other archetypical π‐conjugated hairy‐rod polymers. General guidelines of how molecular weight influences nanostructure, phase behavior, alignment, and surface morphology are given.  相似文献   

3.
A new dicyanodistyrylbenzene‐based phasmidic molecule, (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(3,4,5‐tris(dodecyloxy)phenyl)acrylonitrile), GDCS, is reported, which forms a hexagonal columnar liquid crystal (LC) phase at room temperature (RT). GDCS molecules self‐assemble into supramolecular disks consisting of a pair of molecules in a side‐by‐side disposition assisted by secondary bonding interactions of the lateral polar cyano group, which, in turn, constitute the hexagonal columnar LC structure. GDCS shows very intense green/yellow fluorescence in liquid/solid crystalline states, respectively, in contrast to the total absence of fluorescence emission in the isotropic melt state according to the characteristic aggregation‐induced enhanced emission (AIEE) behavior. The AIEE and two‐color luminescence thermochromism of GDCS are attributed to the peculiar intra‐ and intermolecular interactions of dipolar cyanostilbene units. It was found that the intramolecular planarization and restricted molecular motion associated with a specific stacking situation in the liquid/solid crystalline phases are responsible for the AIEE phenomenon. The origin of the two‐color luminescence was elucidated to be due to the interdisk stacking alteration in a given column driven by the specific local dipole coupling between molecular disks. These stacking changes, in turn, resulted in the different degree of excited‐state dimeric coupling to give different emission colors. To understand the complicated photophysical properties of GDCS, temperature‐dependent steady‐state and time‐resolved PL measurements have been comprehensively carried out. Uniaxially aligned and highly fluorescent LC and crystalline microwires of GDCS are fabricated by using the micromolding in capillaries (MIMIC) method. Significantly enhanced electrical conductivity (0.8 × 10?5 S?cm?1/3.9 × 10?5 S?cm?1) of the aligned LC/crystal microwires were obtained over that of multi‐domain LC sample, because of the almost perfect shear alignment of the LC material achieved in the MIMIC mold.  相似文献   

4.
Discotic liquid‐crystalline (LC) physical gels have been prepared by combining the self‐assembled fibers of a low‐molecular‐weight gelator and semiconducting LC triphenylene derivatives. The hole mobilities of the discotic LC physical gels measured by a time‐of‐flight method become higher than those of LC triphenylenes alone. The introduction of the finely dispersed networks of the gelator in the hexagonal columnar phases may affect the molecular dynamics of the liquid crystals, resulting in the enhancement of hole transporting behavior in the LC gel state.  相似文献   

5.
The infrared photoinduced alignment change of liquid‐crystal domains was investigated for a hexagonal columnar mesophase of a liquid‐crystalline triphenylene derivative. A uniform and anisotropic alignment change of domains was observed when a polarized infrared (IR) light corresponding to the wavelength of the aromatic C–C stretching absorption band of the triphenylene core was used to irradiate the sample. The relationship between the aligned azimuthal angle of the columnar axis and the polarization of the IR incident irradiation was investigated. IR absorption dichroism is induced as a result of the reorientation of triphenylene core. Texture observation and polarizing microscope FTIR spectra show that a change of the molecular alignment occurred and that the direction of columns depends on the polarization angle of the IR light used for irradiation. The mechanism of the alignment change in a columnar liquid crystal film by IR irradiation is also discussed. The technique could provide a novel technology to control the columnar alignment of highly viscous liquid crystals.  相似文献   

6.
The self‐assembly of 1,3‐phenylene bis[4‐(4‐n‐heptyloxybenzoyloxy)‐benzoates] (BC7) is studied to examine the formation of helical morphologies from achiral banana‐shaped liquid crystal molecules at different self‐assembling levels. Various hierarchical superstructures including flat‐elongated lamellar crystal, left‐ and right‐handed helical ribbons, and tubular texture are observed while the BC7 molecules self‐assemble in THF/H2O solution. By contrast, only plate‐like morphology is observed in the self‐assembly of achiral linear shaped 1,4‐phenylene bis[4‐(4‐n‐heptyloxybenzoyloxy)‐benzoates] (LC7) molecules, indicating that the chirality of the self‐assembled texture is strongly dependent upon the molecular geometry of the achiral molecules. The formation of the helical superstructures, namely hierarchical chirality, is attributed to the conformational chirality from the achiral banana‐shaped liquid crystalline molecules, as evidenced by significant optical activity in time‐resolved circular dichroism experiments. Selective area electron diffraction is performed to examine the structural packing of the hierarchical superstructures. As observed, the molecular disposition of the lamellar crystal is identical to that of the helical superstructure. Also, the diffraction patterns of the helical superstructures appeared arc‐like patterns consisting of a series of reflections, suggesting that the helical morphology resulted from the curving of the lamellar crystals through a twisting and bending mechanism. Consequently, the model of molecular disposition in the self‐assembled helical superstructures from the achiral banana‐shaped molecules is proposed. The morphological evolution in this study may provide further understanding with respect to the chiral information transfer mechanism from specific molecular geometry to hierarchical chirality in the achiral banana‐shaped molecules.  相似文献   

7.
Significant anisotropic electrical conduction in organosilica films is achieved by long‐range orientation of electroactive perylene bisimide (PBI) moieties in the silica scaffold. A new PBI‐based organosilane precursor is designed with lyotropic liquid‐crystalline properties. The PBI precursor with triethoxysilylphenyl groups exhibits a hexagonal columnar phase in the presence of organic solvents. The lyotropic liquid‐crystalline behavior of the precursor enables the preparation of dip‐coated films consisting of uniaxially aligned columnar aggregates of the PBI precursor on the centimeter scale. The oriented structure is successfully fixed by in situ polycondensation, which yields insoluble, thermally stable PBI–silica hybrid films. The oriented organosilica films doped with hydrazine exhibit high electrical conductivities on the order of 10?2 S cm?1, which are at the highest level for organosilica materials, and are comparable to those of all‐organic PBI assemblies. Definite anisotropy of conductivities is also found for these films. The present results suggest that the induction of significant electrical properties in organic molecular assemblies is compatible with the structural stabilization by inorganic–organic hybridization.  相似文献   

8.
We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

9.
The controlling of molecular orientation and structural ordering of organic semiconductors is crucial to achieve high performance electronic devices. In this work, large‐area highly oriented and ordered films of an excellent electron transporter Poly{[N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalenedicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are achieved by improved solution‐cast in high magnetic field. Microstructural characterizations reveal that the chain backbones of P(NDI2OD‐T2) are highly aligned along the applied magnetic field in the films. Based on the synchrotron‐based X‐ray diffraction analysis of the polymer films cast from different solvents, a mechanism which controls the alignment process is proposed, which emphasizes that molecular aggregates of P(NDI2OD‐T2) preformed in the solution initiate magnetic alignment and finally determine the degree of film texture. Furthermore, the time‐modulated magnetic field technique is utilized to effectively control the orientation of π‐conjugated plane of the backbones, thus the degree of face‐on molecular packing of P(NDI2OD‐T2) is enhanced significantly. Thin film transistors based on the magnetic‐aligned P(NDI2OD‐T2) films exhibit an enhancement of electron mobility by a factor of four compared to the unaligned devices, as well as a large mobility anisotropy of seven.  相似文献   

10.
The development of a nanoporous material from a columnar liquid crystalline complex between a polymerizable benzoic acid derivative and a 1,3,5‐tris(1H‐benzo[d]imidazol‐2‐yl)benzene template molecule is described. The morphology of the liquid crystalline complex is retained upon polymerization and quantitative removal of the template molecule affords a nanoporous material with the same lattice parameters. The nanoporous material selectively binds cations from aqueous solution, with selectivity for sodium and potassium ions over lithium and barium ions, as shown with FT‐IR. Binding is also quantified gravimetrically with a quartz crystal microbalance with dissipation monitoring, a technique that is used for this purpose for the first time here.  相似文献   

11.
Charge carrier transport in organic electronic devices is influenced by the crystalline microstructure and morphology of the organic semiconductor film. Evaporation behavior during drying plays a vital role in controlling the film morphology and the distribution of solute in inkjet‐printed films. On p. 229, Kilwon Cho and co‐workers demonstrate the influence of the evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of inkjet‐printed 6,13‐bis((triisopropylsilylethynyl) pentacene. The results provide an excellent method for direct‐write fabrication of high‐performance organic electronics. We have demonstrated the influence of evaporation‐induced flow in a single droplet on the crystalline microstructure and film morphology of an ink‐jet‐printed organic semiconductor, 6,13‐bis((triisopropylsilylethynyl) pentacene (TIPS_PEN), by varying the composition of the solvent mixture. The ringlike deposits induced by outward convective flow in the droplets have a randomly oriented crystalline structure. The addition of dichlorobenzene as an evaporation control agent results in a homogeneous film morphology due to slow evaporation, but the molecular orientation of the film is undesirable in that it is similar to that of the ring‐deposited films. However, self‐aligned TIPS_PEN crystals with highly ordered crystalline structures were successfully produced when dodecane was added. Dodecane has a high boiling point and a low surface tension, and its addition to the solvent results in a recirculation flow in the droplets that is induced by a Marangoni flow (surface‐tension‐driven flow), which arises during the drying processes in the direction opposite to the convective flow. The field‐effect transistors fabricated with these self‐aligned crystals via ink‐jet printing exhibit significantly improved performance with an average effective field‐effect mobility of 0.12 cm2 V–1 s–1. These results demonstrate that with the choice of appropriate solvent ink‐jet printing is an excellent method for the production of organic semiconductor films with uniform morphology and desired molecular orientation for the direct‐write fabrication of high‐performance organic electronics.  相似文献   

12.
A series of liquid‐crystalline (LC) π‐ ‐conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized. These polycatenar oligothiophenes form various LC nanostructures including smectic, columnar, and micellar cubic phases. These properties depend on the number and length of the terminal alkoxy chains. The hole mobilities for the oligothiophenes have been measured. The layered smectic and columnar structures are capable of transporting holes, leading to mobilities of up to 0.01 cm2 V?1 s?1. The columnar LC assemblies have also been explored to produce linearly polarized light‐emission. Fine red polarized fluorescence is observed from a uniaxially aligned film of the oligothiophenes. The redox properties of the oligothiophenes both in solutions and in films have been examined. The oligothiophenes exhibit electrochromism upon applying an oxidative potential. The present design strategy is useful for fabricating a variety of functional electro‐active molecular assemblies.  相似文献   

13.
A novel red phosphorescent iridium complex containing a carbazole‐functionalized β‐diketonate, Ir(DBQ)2(CBDK) (bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate)) is designed, synthesized, and characterized. The electrophosphorescence properties of a nondoped device using the title complex as an emitter with a device configuration of indium tin oxide (ITO)/N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐diphenyl‐4,4′‐diamine (NPB; 20 nm)/iridium complex (20 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 5 nm)/tris(8‐hydroxyquinoline) (AlQ; 30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) are examined. The results show that the nondoped device achieves a maximum lumen efficiency as high as 3.49 lm W–1. To understand this excellent result observed, two reference complexes Ir(DBQ)2(acac), where acac is the acetyl acetonate anion, and Ir(DBQ)2(FBDK), [bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(9‐methyl‐fluoren‐9‐yl)‐6,6‐dimethylheptane‐3,5‐diketonate)], have also been synthesized, and as emitters they were examined under the same device configuration. The maximum lumen efficiency of the former compound is found to be 0.26 lm W–1 while that for the latter is 0.37 lm W–1, suggesting that the excellent performance of Ir(DBQ)2(CBDK) can be attributed mainly to an improved hole‐transporting property that benefits the exciton transport. In addition, a bulky diketonate group separates the emitter centers from each other, which is also important for organic light‐emitting diodes.  相似文献   

14.
Mineral liquid crystals are materials in which mineral's intrinsic properties are combined with the self‐organization behavior of colloids. However, the use of such a system for practical application, such as optical switching, has rarely been demonstrated due to the fundamental drawbacks of colloidal systems such as limited dispersion stability. Studying colloidal suspensions of LaPO4 nanorods, it is found that drastic improvement of colloidal stability can be obtained through a transfer of particles from water towards ethylene glycol, thus enabling the investigation of liquid crystalline properties of these concentrated suspensions. Using polarization microscopy and small‐angle x‐ray scattering (SAXS), self‐organization into nematic and columnar mesophases is observed enabling the determination of the whole phase diagram as a function of ionic strength and rod volume fraction. When an external alternative electric field is applied, a very efficient orientation of the nanorods in the liquid‐crystalline suspension is obtained, which is associated with a significant optical birefringence. These properties, combined with the high colloidal stability, are promising for the use of such high transparent and athermal material in electro‐optical devices.  相似文献   

15.
A relatively high‐efficiency, fluorescent pure‐white organic light‐emitting diode was fabricated using a polysilicic acid (PSA) nanodot‐embedded polymeric hole‐transporting layer (HTL). The diode employed a mixed host in the single emissive layer, which comprised 0.5 wt % yellow 5,6,11,12‐tetra‐phenylnaphthacene doped in the mixed host of 50 % 2‐(N,N‐diphenyl‐amino)‐6‐[4‐(N,N‐diphenylamino)styryl]naphthalene and 50 % N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,10‐biphenyl‐4‐4′‐diamine. By incorporating 7 wt % 3 nm PSA nanodot into the HTL of poly(3,4‐ethylene‐dioxythiophene)‐poly‐(styrenesulfonate), the efficiency at 100 cd m–2 was increased from 13.5 lm W–1 (14.7 cd A–1; EQE: 7.2 %) to 17.1 lm W–1 (17.6 cd A–1; EQE: 8.3 %). The marked efficiency improvement may be attributed to the introduction of the PSA nanodot, leading to a better carrier‐injection‐balance.  相似文献   

16.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

17.
The anisotropy in the optical absorption and photoconductivity of thin layers of mesomorphic derivatives of hexa‐peri‐hexabenzocoronene (HBC) have been investigated for aligned films prepared via three different methods: deposition on friction‐deposited polytetrafluoroethylene (PTFE), zone‐casting (ZC), and Langmuir–Blodgett (LB) multilayer dipping. The ratio of the optical density for light polarized perpendicular to the alignment direction, OD+, to that for light polarized parallel, OD=, varies from close to 1.0 up to 12.5 depending on whether the HBC cores are tilted at close to 45° or 90° with respect to the axis of the self‐assembled columnar stacks. For all aligned films the photoconductivity, determined using the electrode‐less flash‐photolysis time‐resolved microwave conductivity technique (FP‐TRMC), was found to be favored in the direction of columnar alignment by up to a factor of 30 for a PTFE‐aligned film. The effect of varying the temperature of the films over a range encompassing the temperature at which the transition from the crystalline solid to the columnar mesophase occurs in the bulk materials has been investigated. High‐temperature annealing increases the optical and conductivity anisotropy for the LB film significantly, but has little effect for the PTFE and the ZC films. The relative efficacy of the different alignment procedures is discussed.  相似文献   

18.
Photoresponsive materials (PRMs) have long been a hot topic and photo‐modulated smart surface is very appealing. Particularly, liquid crystalline PRMs are able to amplify and stabilize photoinduced orientation thanks to their self‐assembling and ordering characteristics. Herein, the first pillararene‐based azobenzene liquid crystalline PRM with well‐defined structure is presented, which can avoid the usually ill‐defined composition drawback of polymer PRMs and prevent the severe H‐aggregation from suppressing or even completely blocking photoresponse in simple azobenzene derivatives. The pillar[5]arene‐based macrocyclic azobenzenes with variant length spacers show wide temperature range smectic liquid crystalline mesophases and excellent film‐formation property. The tubular pillar[5]arene macrocyclic framework provides sufficient free volume for azobenzene moieties to achieve reversible photoisomerization and photoalignment; thus, their thin films demonstrate excellent light‐triggered modulation of surface free energy, wettability, and even photoalignment‐mediated orientation of an upper layer discotic liquid crystal columnar mesophase. Such pillararene‐based azobenzene liquid crystals represent novel and promising PRMs with extensive fascinating applications.  相似文献   

19.
A multiscale investigation of N,N′‐bis(n‐octyl)‐x:y, dicyanoperylene‐3,4:9,10‐bis(dicarboximide), PDI8‐CN2, shows the same molecular arrangement in the bulk and in thin films sublimated on SiO2/Si wafers. Non‐conventional powder diffraction methods and theoretical calculations concur to provide a coherent picture of the crystalline structure. X‐ray diffraction (XRD) and atomic force microscopy (AFM) analyses of films of different thickness deposited at different substrate temperatures indicate the existence of two temperature‐dependent deposition regimes: a low‐temperature (room temperature) regime and a high‐temperature (80–120 °C) one, each characterized by different growth mechanisms. These mechanisms eventually result in different morphological and structural features of the films, which appear to be highly correlated with the trend of the electrical parameters that are measured in PDI8‐CN2‐based field‐effect transistors.  相似文献   

20.
Peptide materials based on the aggregation of polyphenylalanine conjugates containing gadolinium complexes and acting as potential contrast agents (CAs) in magnetic resonance imaging (MRI) are described. Monomers contain two (F2) or four (F4) phenylalanine residues for self‐assembly, a chelating agent, 1,4,7,10‐tetraazacyclododecane‐N,N,N,N‐tetraacetic acid (DOTA) or diethylenetriaminepentaacetic acid (DTPA), for achieving gadolinium coordination, and ethoxylic linkers at two (L2) or six (L6) poly(ethylene glycol) (PEG) units between the chelating group and the peptide region. Both DOTA and DTPA tetraphenylalanine derivatives, and their gadolinium complexes DOTA(Gd)‐L6‐F4 and DTPA(Gd)‐L6‐F4, are able to self‐aggregate at very low concentration. Structural characterization, obtained by circular dichroism and infrared measurements, confirms the amyloid type fibril formation in which an antiparallel peptide alignment is preferred. Amyloid type fibril formation is also observed, in solid state, by transmission electron microscopy images and X‐ray diffraction patterns. The relaxivity values of DOTA(Gd)‐L6‐F4 and DTPA(Gd)‐L6‐F4 and their ability to enhance the MRI cellular response on the J774A.1 mouse macrophages cell line indicate that these peptide materials are promising candidate as a new class of supramolecular gadolinium based MRI contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号