首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3‐hexylthiophene) with the two polyfluorene copolymers poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2′′‐diyl) (F8TBT) and poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100 °C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140 °C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing‐incidence small‐angle X‐ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140 °C‐annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as‐spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200 °C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize.  相似文献   

2.
This work investigates the composition and morphology of films of poly(3‐hexylthiophene) (P3HT), polyfluorene co‐polymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) and blends thereof that are used in efficient all‐polymer solar cells. Ultraviolet photoemission spectroscopy (UPS) and X‐ray photoemission spectroscopy (XPS) studies on thin polymer and blend films on ZnO substrates reveal the existence of a 1–2 nm thick P3HT layer at the top surface of the blend films. XPS depth profiling studies reveal a density wave (λ ≈ 70 nm) originating from the air interface. As no preferential accumulation is observed at the bottom interface with ZnO, the composition at this interface is consistent with the original composition of the blend solution prior to spin‐coating. The morphology of this buried interface was studied by means of atomic force microscopy (AFM) and revealed that upon annealing the average domain size increases slightly (from 27 nm to 40 nm). It is observed that the photovoltaic performance of such inverted hybrid device improves upon annealing, however we believe this to mostly be a result of increased crystallinity in the P3HT domains leading to improved charge transport in the device, rather than changes in the blend phase separation.  相似文献   

3.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

4.
A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non‐optimized (chloroform cast) and nearly optimized (solvent‐annealed o‐dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H‐aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent‐annealed o‐dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra‐ and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges.  相似文献   

5.
This study has proposed to use a well‐defined oligomer F4TBT4 to replace its analogue polymer as electron acceptor toward tuning the phase separation behavior and enhancing the photovoltaic performance of all‐polymer solar cells. It has been disclosed that the oligomer acceptor favors to construct pure and large‐scale phase separation in the polymer:oligomer blend film in contrast to the polymer:polymer blend film. This gets benefit from the well‐defined structure and short rigid conformation of the oligomer that endows it aggregation capability and avoids possible entanglement with the polymer donor chains. The charge recombination is to some extent suppressed and charge extraction is also improved. Finally, the P3HT:F4TBT4 solar cells not only output a high VOC above 1.2 V, but also achieve a power conversion efficiency of 4.12%, which is two times higher than the P3HT:PFTBT solar cells and is comparable to the P3HT:PCBM solar cells. The strategy of constructing optimum phase separation with oligomer to replace polymer opens up new prospect for the further improvement of the all‐polymer solar cells.  相似文献   

6.
We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3‐hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl‐C61‐butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2,2‐diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge‐separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long‐lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap‐free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long‐lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices.  相似文献   

7.
We present a combined charge transport and X-ray diffraction study of blends based on regioregular poly(3-hexylthiophene) (P3HT) and the polyfluorene co-polymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2′,2′′-diyl) (F8TBT) that are used in efficient all-polymer solar cells. Hole mobility is observed to increase by nearly two orders of magnitude from less than 10?7 cm2 V?1 s?1 for as spin-coated blends to 6 × 10?6 cm2 V?1 s?1 for blends annealed at 453 K at a field of 2.7 × 105 V/cm, but still significantly below the time-of-flight mobility of unblended P3HT of 1.7 × 10?4 cm2 V?1 s?1. The hole mobility of the blends also show a strong negative electric-field dependence, compared with a relatively flat electric-field dependence of unblended P3HT, suggestive of increased spatial disorder in the blends. X-ray diffraction measurements reveal that P3HT/F8TBT blends show a phase separation of the two components with a crystalline part attributed to P3HT and an amorphous part attributed to F8TBT. In as-spun and mildly annealed blends, the measured d-values and relative intensities of the 100, 200 and 300 P3HT peaks are noticeably different to unblended P3HT indicating an incorporation of F8TBT in P3HT crystallites that distorts the crystal structure. At higher anneal temperatures the blend d-values approach that of unblended P3HT suggesting a well separated blend with pure P3HT crystallites. P3HT crystallite size in the blend is also observed to increase with annealing from 3.3 to 6.1 nm, however similar changes in crystallite size are observed in unblended P3HT films with annealing. The lower mobility of P3HT/F8TBT blends is attributed not only to increased P3HT structural disorder in the blend, but also due to the blend morphology (increased spatial disorder). Changes in hole mobility with annealing are interpreted in terms of the need to form percolation networks of P3HT crystallites within an F8TBT matrix, with a possible contribution due to the intercalation of F8TBT in P3HT crystallites acting as defects in the as-prepared state.  相似文献   

8.
Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9‐dioctylfluorene‐co‐bis(N,N′‐(4,butylphenyl))bis(N,N′‐phenyl‐1,4‐phenylene)diamine) (PFB) and poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron–hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X‐ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 °C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three‐fold increase in the number of excitons dissociated. Under short‐circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current‐voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices.  相似文献   

9.
We investigate thin poly(3‐hexylthiophene‐2,5‐diyl)/[6,6]‐phenyl C61 butyric acid methyl ester (P3HT/PCBM) films, which are widely used as active layers in plastic solar cells. Their structural properties are studied by grazing‐incidence X‐ray diffraction (XRD). The size and the orientation of crystalline P3HT nanodomains within the films are determined. PCBM crystallites are not detected in thin films by XRD. Upon annealing, the P3HT crystallinity increases, leading to an increase in the optical absorption and spectral photocurrent in the low‐photon‐energy region. As a consequence, the efficiency of P3HT/PCBM solar cells is significantly increased. A direct relation between efficiency and P3HT crystallinity is demonstrated.  相似文献   

10.
High electron mobility and ambipolar charge transport are observed in phase‐separated binary blends of n‐type poly(benzobisimidazobenzophenanthroline) (BBL) with p‐type polymer semiconductors, poly[(thiophene‐2,5‐diyl)‐alt‐(2,3‐diheptylquinoxaline‐5,8‐diyl)] (PTHQx) and poly(10‐hexylphenoxazine‐3,7‐diyl‐alt‐3‐hexyl‐2,5‐thiophene) (POT). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show phase‐separated domains of 50–300 nm in the binary blend thin films. The TEM images and electron diffraction of BBL/PTHQx blends show the growth of single‐crystalline phases of PTHQx within the BBL matrix. A relatively high electron mobility (1.0 × 10–3 cm2 V–1 s–1) that is constant over a wide blend‐composition range is observed in the PTHQx blend field‐effect transistors (FETs). Ambipolar charge transport is observed in both blend systems at a very high concentration of the p‐type semiconductor (≥90 wt % PTHQx or ≥80 wt % POT). Ambipolar charge transport is exemplified by an electron mobility of 1.4 × 10–5 cm2 V–1 s–1 and a hole mobility of 1.0 × 10–4 cm2 V–1 s–1 observed in the 98 wt % PTHQx blend FETs. These results show that ambipolar charge transport and the associated carrier mobilities in blends of conjugated polymer semiconductors have a complex dependence on the blend composition and the phase‐separated morphology.  相似文献   

11.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices.  相似文献   

12.
The insertion of a DNA nanolayer into polymer based solar cells, between the electron transport layer (ETL) and the active material, is proposed to improve the charge separation efficiency. Complete bulk heterojunction donor–acceptor solar cells of the layered type glass/electrode (indium tin oxide)/ETL/P3HT:PC70BM/hole transport layer/electrode (Ag) are investigated using femtosecond transient absorption spectroscopy both in the NIR and the UV–vis regions of the spectrum. The transient spectral changes indicate that when the DNA is deposited on the ZnO nanoparticles (ZnO‐NPs) it can imprint a different long range order on the poly(3‐hexylthiophene) (P3HT) polymer with respect to the non‐ZnO‐NPs/DNA containing cells. This leads to a larger delocalization of the initially formed exciton and its faster quenching which is attributed to more efficient exciton dissociation. Finally, the temporal response of the NIR absorption shows that the DNA promotes more efficient production of charge transfer states and free polarons in the P3HT cation indicating that the increased exciton dissociation correlates with increased charge separation.  相似文献   

13.
We use spectroscopic ellipsometry to study the evolution of structure and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) photovoltaic thin film blends upon thermal annealing. Four distinct processes are identified: the evaporation of residual solvent above the glass transition temperature of the blend, the relaxation of non‐equilibrium molecular conformation formed through spin‐casting, the crystallization of both P3HT and PCBM components, and the phase separation of the P3HT and PCBM domains. Devices annealed at 150 °C for between 10 and 60 min exhibit an average power conversion efficiency of around 4.0%. We find that the rate at which the P3HT/PCBM is returned to room temperature is more important in determining device efficiency than the duration of the isothermal annealing process. We conclude that the rapid quenching of a film from the annealing temperature to room temperature hampers the crystallization of the P3HT and can trap non‐equilibrium morphological states. Such states apparently impact on device short circuit current, fill factor and, thus, operational efficiency.  相似文献   

14.
The morphological, bipolar charge‐carrier transport, and photovoltaic characteristics of poly(3‐alkylthiophene) (P3AT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are studied as a function of alkyl side‐chain length m, where m equals the number of alkyl carbon atoms. The P3ATs studied are poly(3‐butylthiophene) (P3BT, m = 4), poly(3‐pentylthiophene) (P3PT, m = 5), and poly(3‐hexylthiophene) (P3HT, m = 6). Solar cells with these blends deliver similar order of photo‐current yield (exceeding 10 mA cm?2) irrespective of side‐chain length. Power conversion efficiencies of 3.2, 4.3, and 4.6% are within reach using solar cells with active layers of P3BT:PCBM (1:0.8), P3PT:PCBM (1:1), and P3HT:PCBM (1:1), respectively. A difference in fill factor values is found to be the main source of efficiency difference. Morphological studies reveal an increase in the degree of phase separation with increasing alkyl chain length. Moreover, while P3PT:PCBM and P3HT:PCBM films have similar hole mobility, measured by hole‐only diodes, the hole mobility in P3BT:PCBM lowers by nearly a factor of four. Bipolar measurements made by field‐effect transistor showed a decrease in the hole mobility and an increase in the electron mobility with increasing alkyl chain length. Balanced charge transport is only achieved in the P3HT:PCBM blend. This, together with better processing properties, explains the superior properties of P3HT as a solar cell material. P3PT is proved to be a potentially competitive material. The optoelectronic and charge transport properties observed in the different P3AT:PCBM bulk heterojunction (BHJ) blends provide useful information for understanding the physics of BHJ films and the working principles of the corresponding solar cells.  相似文献   

15.
Bulk heterojunction solar cells based on blends of poly(3‐hexylthiophene) (P3HT) and phenyl‐C61‐butyric acid methyl ester (PC61BM) are fabricated using self‐assembled P3HT nanowires in a marginal solvent without post‐treatments. The interconnected network structures of self‐organized P3HT nanowires create continuous percolation pathways through the active layer and contribute to enhanced carrier mobility. The morphology and photovoltaic properties are studied as a function of ageing time of the P3HT precursor solution. Optimal photovoltaic properties are found at 60 h ageing time, which increases both light absorption and charge balance. Multilayered solar cells with a compositionally graded structure are fabriacted using preformed P3HT nanowires by inserting a pure P3HT donor phase onto the hole‐collecting electrode. Applying optimized annealing conditions to the P3HT buffer layer achieves an enhanced hole mobility and a power conversion efficiency of 3.94%. The introduction of a compositionally graded device structure, which contains a P3HT‐only region, reduces charge recombination and electron injection to the indium tin oxide (ITO) electrode and enhances the device properties. These results demonstrate that preformed semiconductor nanowires and compositionally graded structures constitute a promising approach to the control of bulk heterojunction morphology and charge‐carrier mobility.  相似文献   

16.
Hybrid bulk heterojunction solar cells based on nanocrystalline TiO2 (nc‐TiO2) nanorods capped with trioctylphosphine oxide (TOPO) and regioregular poly(3‐hexylthiophene) (P3HT) are processed from solution and characterized in order to relate the device function (optical absorption, charge separation, and transport and photovoltaic properties) to active‐layer properties and device parameters. Annealing the blend films is found to greatly improve the polymer–metal oxide interaction at the nc‐TiO2/P3HT interface, resulting in a six‐fold increase of the charge separation yield and improved photovoltaic device performance under simulated solar illumination. In addition, the influence of the organic ligand at the nc‐TiO2 particle surface is found to be crucial for charge separation. Ligand‐exchange procedures applied on the TOPO‐capped nc‐TiO2 nanorods with an amphiphilic ruthenium‐based dye are found to further improve the charge‐separation yield at the polymer–nanocrystal interface. However, the poor photocurrents generated in the hybrid blend devices, before and after ligand exchange, suggest that transport within or between nanoparticles limits performance. By comparison with other donor–acceptor bulk heterojunction systems, we conclude that charge transport in the nc‐TiO2:P3HT blend films is limited by the presence of an intrinsic trap distribution mainly associated with the nc‐TiO2 particles.  相似文献   

17.
Knowledge about the working mechanism of the PbS:P3HT:PCBM [P3HT=poly(3‐hexylthiophene), PCBM=[6,6]‐phenyl‐C61 ‐butyric acid methyl ester] hybrid blend used for efficient near‐infrared photodiodes is obtained from time‐resolved photoluminescence (PL) studies. To understand the role of each component in the heterojunction, the PL dynamics of the ternary (PbS:P3HT:PCBM) blend and the binary (PbS:P3HT, PbS:PCBM and P3HT:PCBM) blends are compared with the PL of the pristine PbS nanocrystals (NCs) and P3HT. In the ternary blend the efficiency of the charge transfer is significantly enhanced compared to the one of PbS:P3HT and PbS:PCBM blends, indicating that both hole and electron transfer from excited NCs to the polymer and fullerene occur. The hole transfer towards the P3HT determines the equilibration of their population in the NCs after the electron transfer towards PCBM, allowing their re‐excitation and new charge transfer process.  相似文献   

18.
Crystallizable, high‐mobility conjugated polymers have been employed as secondary donor materials in ternary polymer solar cells in order to improve device efficiency by broadening their spectral response range and enhancing charge dissociation and transport. Here, contrasting effects of two crystallizable polymers, namely, PffBT4T‐2OD and PDPP2TBT, in determining the efficiency improvements in PTB7‐Th:PC71BM host blends are demonstrated. A notable power conversion efficiency of 11% can be obtained by introducing 10% PffBT4T‐2OD (relative to PTB7‐Th), while the efficiency of PDPP2TBT‐incorporated ternary devices decreases dramatically despite an enhancement in hole mobility and light absorption. Blend morphology studies suggest that both PffBT4T‐2OD and PDPP2TBT are well dissolved within the host PTB7‐Th phase and facilitate an increased degree of phase separation between polymer and fullerene domains. While negligible charge transfer is determined in binary blends of each polymer mixture, effective energy transfer is identified from PffBT4T‐2OD to PTB7‐Th that contributes to an improvement in ternary blend device efficiency. In contrast, energy transfer from PTB7‐Th to PDPP2TBT worsens the efficiency of the ternary device due to inefficient charge dissociation between PDPP2TBT and PC71BM.  相似文献   

19.
Grazing incidence X‐ray scattering (GIXS) is used to characterize the morphology of poly(3‐hexylthiophene) (P3HT)–phenyl‐C61‐butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom‐built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well‐oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer–fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high‐performance organic solar cell devices.  相似文献   

20.
The influence of various thermal treatment steps on the morphology and the photoconductive properties of a non‐contacted, 50 nm thick blend (50:50 wt.‐%) of [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) and poly(3‐hexyl thiophene) (P3HT) spin‐coated from chloroform has been studied using transmission electron microscopy (TEM) and the electrodeless time‐resolved microwave conductivity technique. After annealing the film for 5 min at 80 °C, TEM images show the formation of crystalline fibrils of P3HT due to a more ordered packing of the polymer chains. The thermal treatment results in a large increase of the photoconductivity, due to an enhancement of the hole mobility in these crystalline P3HT domains from 0.0056 cm2 V–1 s –1 for the non‐annealed sample to 0.044 cm2 V–1 s –1 for the sample annealed at 80 °C. In contrast, the temporal shape of the photoconductivity, with typical decay half‐times, τ1/2, of 1 μs for the lowest excitation intensities, is unaffected by the temperature treatment. Further annealing of the sample at 130 °C results in the formation of three different substructures within the heterojunction: a PCBM:P3HT blend with PCBM‐rich clusters, a region depleted of PCBM, and large PCBM single crystals. Only a minor increase in the amplitude, but a tenfold rise of the decay time of the photoconductivity, is observed. This is explained by the formation of PCBM‐rich clusters and large PCBM single crystals, resulting in an increased diffusional escape probability for mobile charge carriers and hence reduced recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号