首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to control organic‐organic interfaces in conjugated polymer blends is critical for further device improvement. Here, we control the phase separation in blends of poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene) (TFB) via chemical modification of the substrate by microcontact printing of octenyltrichlorosilane molecules. The lateral phase‐separated structures in the blend film closely replicate the underlying micrometer‐scale chemical pattern. We found nanometer‐scale vertical segregation of the polymers within both lateral domains, with regions closer to the substrate being substantially pure phases of either polymer. Such phase separation has important implications for the performance of light‐emitting diodes fabricated using these patterned blend films. In the absence of a continuous TFB wetting layer at the substrate interface, as typically formed in spin‐coated blend films, charge carrier injection is confined in the well‐defined TFB‐rich domains. This confinement leads to high electroluminescence efficiency, whereas the overall reduction in the roughness of the patterned blend film results in slower decay of device efficiency at high voltages. In addition, the amount of surface out‐coupling of light in the forward direction observed in these blend devices is found to be strongly correlated to the distribution of periodicity of the phase‐separated structures in the active layer.  相似文献   

2.
Two water‐soluble conjugated polyelectrolytes, poly(9,9′‐bis(6‐N,N,N‐trimethylammoniumhexyl)fluorene‐alt‐1,4‐(2,5‐bis(6‐N,N,N‐trimethylammoniumhexyloxy))phenylene) tetrabromide ( P1i ) and poly((10,10′‐bis(6‐N,N,N‐trimethylammoniumhexyl)‐10H‐spiro(anthracene‐9,9′‐fluorene))‐alt‐1,4‐(2,5‐bis(6‐N,N,N‐trimethylammoniumhexyloxy))phenylene) tetrabromide ( P2i ) are synthesized, characterized, and used in fluorescence resonance energy transfer (FRET) experiments with fluorescein‐labeled single‐stranded DNA (ssDNA‐Fl). P1i and P2i have nearly identical π‐conjugated backbones, as determined by cyclic voltammetry and UV‐vis spectroscopy. The main structural difference is the presence of an anthracenyl substituent, orthogonal to the main chain in each of the P2i repeat units, which increases the average interchain separation in aggregated phases. It is possible to observe emission from ssDNA‐Fl via FRET upon excitation of P2i . Fluorescein is not emissive within the ssDNA‐Fl/ P1i electrostatic complex, suggesting Fl emission quenching through photoinduced charge transfer (PCT). We propose that the presence of the anthracenyl “molecular bumper” in P2i increases the distance between optical partners, which decreases PCT more acutely relative to FRET.  相似文献   

3.
The syntheses of new fluorene‐based π‐conjugated copolymers; namely, poly((5,5″‐(3′,4′‐dihexyl‐2,2′;5′,2″‐terthiophene 1′,1′‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTORT), poly((5,5″″‐(3″,4″‐dihexyl‐2,2′:5′,2′:5″,2‴:5‴,2″″‐quinquethiophene 1″,1″‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTTORTT), and poly((5,5‐E‐α‐(2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTCNVT), are reported. In the solid state, PFTORT and PFTCNVT present red–orange emission (with a maximum at 610 nm) while PFTTORTT shows a red emission with a maximum at 666 nm. In all cases, electrochemical measurements have revealed p‐ and n‐dopable copolymers. All these copolymers have been successfully tested in simple light‐emitting diodes and show promising results for orange‐ and red‐light‐emitting devices.  相似文献   

4.
Disordered nanoporous silver (NPAg) thin films fabricated by a thermally assisted dewetting method are employed as a platform to influence chain alignment, morphology, and optical properties of three well‐known conjugated polymers. Grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) measurements show that the porous structure of the metal induces close π–π stacking of poly(3‐hexylthiophene) (P3HT) chains and extended, planar chain conformations of poly(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl) (PFO) and poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,8‐diyl)] (F8BT). A greater degree of vertically‐oriented P3HT chains are found on NPAg compared with planar Ag. However, PFO and F8BT chain alignment is only affected when pore size is large. The optical properties of NPAg films are investigated by transmission and back‐scattering spectroscopies. Strong back‐scattering is observed for all NPAg morphologies, especially for NPAg with small pore sizes. Photoluminescence spectroscopy of conjugated polymer layers on NPAg showed pronounced emission enhancements (up to factors of 26) relative to layers on glass. The enhancements are attributed primarily to: 1) redistribution of conjugated polymer emission by Ag; 2) redirection of emission by polymer‐filled nanopores; and 3) local electromagnetic field effects. This work demonstrates the potential of NPAg‐thin films to influence molecular chain morphology and to improve light‐extraction in organic optoelectronic devices.  相似文献   

5.
We report the design and synthesis of three alcohol‐soluble neutral conjugated polymers, poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene] (PF‐OH), poly[9,9‐bis(2‐(2‐(2‐diethanol‐aminoethoxy)ethoxy)ethyl)fluorene‐alt‐4,4′‐phenylether] (PFPE‐OH) and poly[9,9‐bis(2‐(2‐(2‐diethanolaminoethoxy) ethoxy)ethyl)fluorene‐alt‐benzothiadizole] (PFBT‐OH) with different conjugation length and electron affinity as highly efficient electron injecting and transporting materials for polymer light‐emitting diodes (PLEDs). The unique solubility of these polymers in polar solvents renders them as good candidates for multilayer solution processed PLEDs. Both the fluorescent and phosphorescent PLEDs based on these polymers as electron injecting/transporting layer (ETL) were fabricated. It is interesting to find that electron‐deficient polymer (PFBT‐OH) shows very poor electron‐injecting ability compared to polymers with electron‐rich main chain (PF‐OH and PFPE‐OH). This phenomenon is quite different from that obtained from conventional electron‐injecting materials. Moreover, when these polymers were used in the phosphorescent PLEDs, the performance of the devices is highly dependent on the processing conditions of these polymers. The devices with ETL processed from water/methanol mixed solvent showed much better device performance than the devices processed with methanol as solvent. It was found that the erosion of the phosphorescent emission layer could be greatly suppressed by using water/methanol mixed solvent for processing the polymer ETL. The electronic properties of the ETL could also be influenced by the processing conditions. This offers a new avenue to improve the performance of phosphorescent PLEDs through manipulating the processing conditions of these conjugated polymer ETLs.  相似文献   

6.
Nanostructured oxide arrays have received significant attention as charge injection and collection electrodes in numerous optoelectronic devices. Zinc oxide (ZnO) nanorods have received particular interest owing to the ease of fabrication using scalable, solution processes with a high degree of control of rod dimension and density. Here, vertical ZnO nanorods as electron injection layers in organic light emitting diodes are implemented for display and lighting purposes. Implementing nanorods into devices with an emissive polymer, poly(9,9‐dioctyluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐N‐(4‐butylphenyl)dipheny‐lamine) (TFB) as an electron blocking layer, brightness and efficiencies up to 8602 cd m?2 and 1.66 cd A?1 are achieved. Simple solution processing methodologies combined with postdeposition thermal processing are highlighted to achieve complete wetting of the nanorod arrays with the emissive polymer. The introduction of TFB to minimize charge leakage and nonradiative exciton decay results in dramatic increases to device yields and provides an insight into the operating mechanism of these devices. It is demonstrated that the detected emission originates from within the polymer layers with no evidence of ZnO band edge or defect emission. The work represents a significant development for the ongoing implementation of ZnO nanorod arrays into efficient light emitting devices.  相似文献   

7.
As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] ( PDTDPP‐alt‐BTZ ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (?e = 0.09 cm2V?1s?1) and holes (?h = 0.1 cm2V?1s?1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ~35 that is much higher than usually obtained values for unipolar logic.  相似文献   

8.
Micro‐ and nanostructuring of conjugated polymers are of critical importance in the fabrication of molecular electronic devices as well as photonic and bandgap materials. The present report delineates the single‐step self‐organization of highly ordered structures of functionalized poly(p‐phenylene)s without the aid of either a controlled environment or expensive fabrication methodologies. Microporous films of these polymers, with a honeycomb pattern, were prepared by direct spreading of the dilute polymer solution on various substrates, such as glass, quartz, silicon wafer, indium tin oxide, gold‐coated mica, and water, under ambient conditions. The polymeric film obtained from C12PPPOH comprises highly periodic, defect‐free structures with blue‐light‐emitting properties. It is expected that such microstructured, conjugated polymeric films will have interesting applications in photonic and optoelectronic devices. The ability of the polymer to template the facile micropatterning of nanomaterials gives rise to hybrid films with very good spatial dispersion of the carbon nanotubes.  相似文献   

9.
Controlling contact resistance in organic field‐effect transistors (OFETs) is one of the major hurdles to achieve transistor scaling and dimensional reduction. In particular in the context of ambipolar and/or light‐emitting OFETs it is a difficult challenge to obtain efficient injection of both electrons and holes from one injecting electrode such as gold since organic semiconductors have intrinsically large band gaps resulting in significant injection barrier heights for at least one type of carrier. Here, systematic control of electron and hole contact resistance in poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) ambipolar OFETs using thiol‐based self‐assembled monolayers (SAMs) is demonstrated. In contrast to common believe, it is found that for a certain SAM the injection of both electrons and holes can be improved. This simultaneous enhancement of electron and hole injection cannot be explained by SAM‐induced work‐function modifications because the surface dipole induced by the SAM on the metal surface lowers the injection barrier only for one type of carrier, but increases it for the other. These investigations reveal that other key factors also affect contact resistance, including i) interfacial tunneling through the SAM, ii) SAM‐induced modifications of interface morphology, and iii) the interface electronic structure. Of particular importance for top‐gate OFET geometry is iv) the active polymer layer thickness that dominates the electrode/polymer contact resistance. Therefore, a consistent explanation of how SAM electrode modification is able to improve both electron and hole injection in ambipolar OFETs requires considering all mentioned factors.  相似文献   

10.
A series of water‐soluble polyfluorene derivatives containing diketopyrrolopyrrole derivative units are synthesized and characterized. These copolymers, poly[9,9'‐bis(6”‐N,N,N‐trimethyl ammonium) hexylfluorene‐coalt‐2,5‐bis (6”‐N,N,N‐trimethylammonium)hexylpyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione] (PFDPN), demonstrate intramolecular energy transfer from the fluorene units to the diketopyrrolopyrrole derivative units, and show red‐shifted emissions in aqueous solution. The PFDPN polymers can combine with Cy5‐labeled ssDNA by electrostatic interactions and efficiently amplify the fluorescence signal of red Cy5 dye through fluorescence resonance energy transfer. Moreover, based on DNA replacement method, this amplification system can be used to monitor the template‐independent DNA elongation process catalyzed by terminal deoxynucleotidyl transferase.  相似文献   

11.
A fully conjugated para‐phenylene ladder polymer ( P1 ) and the alternating copolymers {2,7‐[9,9‐bis(2‐ethylhexyl)fluorene]‐5,5′‐(2,2′‐bithiophene)} ( P3 ) and {2,7‐[9,9‐dioctylfluorene]‐5,5′‐(2,2′‐bithiophene)} ( P4 ) have been prepared via metal‐mediated cross‐coupling reactions, using microwaves as a heat source. The procedure, which yields polymeric material in ca. ten minutes, has no adverse effects on the quality of the polymers and displays a high degree of reproducibility. Transfer of the optimized conditions to the synthesis of a new naphthalene‐based polyarylene‐ketone ( P2 ) and a (1,5‐dioctoxynaphthylene‐2,6‐diyl‐alt‐2,2′‐bithiophene‐5,5′‐diyl) copolymer ( P5 ) confirmed the versatility of the procedure and the dramatic reduction in reaction times compared with conventional heating. In the case of the Stille‐type coupling reaction of the electron‐rich, less reactive dibromo monomer 1,5‐dioctoxy‐2,6‐dibromo‐naphthalene, the microwave‐assisted protocol results in a marked increase in both yield and molecular weight.  相似文献   

12.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

13.
Poly{[2,5‐bis(3‐sulfonatobutoxy)‐1,4‐phenylene sodium salt]‐alt‐(1,4‐phenylene)}, which is an anionically charged, water‐soluble poly(para‐phenylene) derivative with aldehyde groups at both chain ends, is prepared via the Suzuki coupling reaction in order to develop a FRET energy donor, while simultaneously dual‐fluorescence‐patterning the protein. Regardless of the end‐capping, the synthesized polymer exhibits a good solubility in water with an absorption maximum at 338 nm and a photoluminescence maximum at 417 nm, similar to those of the the end‐capped polymer. The emission spectrum of the polymer overlaps the absorption spectrum of fluorescein, and therefore, the polymer can be used as an energy donor with fluorescein as the energy acceptor in the FRET mechanism. This polymer design not only takes advantage of the introduction of biotin at both chain ends (through a reaction with the aldehyde end groups) to realize the facile interaction with streptavidin, but also brings into play the electrostatic features of the anionic sulfonate groups to fabricate an electrostatic self‐assembly with polycation for the pattern substrate. The micropattern of fluorescein‐labeled streptavidin is fabricated on the polymer‐coated substrate through micro‐contact printing using a polydimethylsiloxane mold. As a result, the polymer substrate exhibits a dual fluorescence micropattern, which results from the blue emission color from the energy donor and the FRET‐amplified green emission from the energy acceptor. The high‐resolution patterning is carried out for the application of multiplexing by simultaneously imaging the patterned green‐emitting fluorescein by FRET and the surrounding blue‐emitting polymer according to an optical detection scheme.  相似文献   

14.
In this paper scanning near‐field microscopy is used to characterize polymer blends for photovoltaic applications, and fluorescence imaging and photoconductivity are combined to elucidate the spatial distribution and relative efficiency of current generation and photoluminescence in different domains of compositionally heterogeneous films. Focus is placed on a binary system consisting of poly[(9,9‐dioctylfluorene)‐alt‐benzothiadiazole] (F8BT) and poly[(9,9‐dioctylfluorene)‐alt‐(bis(N,N′‐(4‐butylphenyl))‐bis(N,N′‐phenyl‐1,4‐phenylenediamine))] (PFB), spun from xylene solutions, so as to obtain phase separation on micrometer and nanometer length scales. Protruding regions with diameters of about 5 μm in the topography image coincide with regions of high photocurrent (PC) and luminescence; these regions are identified as being F8BT‐rich. A general method to estimate the photoluminescence efficiency in the different domains of phase‐separated blends is proposed. As expected, lack of enhancement of the PC signal at the boundaries between protruding and lower‐lying phases indicate that these microscale boundaries play a small role in the charge generation by exciton splitting. This is consistent with the domains compositional inhomogeneity, and thus with finer phase separation within the domains. We also provide an analysis of the extent to which the metallized probe perturbs the near‐field photocurrent signal by integrating Poisson's equation. Finally, by using a Bethe–Bouwkamp model, the energy absorbed by the polymer film in the different regions is estimated.  相似文献   

15.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

16.
Scanning force microscopy (SFM) is used to study the surface morphology of spin‐coated thin films of the ion‐transport polymer poly(ethylene oxide) (PEO) blended with either cyclodextrin (CD)‐threaded conjugated polyrotaxanes based on poly(4,4′‐diphenylene‐vinylene) (PDV), β‐CD–PDV, or their uninsulated PDV analogues. Both the polyrotaxanes and their blends with PEO are of interest as active materials in light‐emitting devices. The SFM analysis of the blended films supported on mica and on indium tin oxide (ITO) reveals in both cases a morphology that reflects the substrate topography on the (sub‐)micrometer scale and is characterized by an absence of the surface structure that is usually associated with phase segregation. This observation confirms a good miscibility of the two hydrophilic components, when deposited by using spin‐coating, as suggested by the luminescence data on devices and thin films. Clear evidence of phase segregation is instead found when blending PEO with a new organic‐soluble conjugated polymer such as a silylated poly(fluorene)‐alt‐poly(para‐phenylene) based polyrotaxane (THS–β‐CD–PF–PPP). The results obtained are relevant to the understanding of the factors influencing the interfacial and the intermolecular interactions with a view to optimizing the performance of light‐emitting diodes, and light‐emitting electrochemical cells based on supramolecularly engineered organic polymers.  相似文献   

17.
Novel poly[(9,9‐bis((6′‐(N,N,N‐trimethylammonium)hexyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl)‐9‐fluorene)) dibromide (WPF‐6‐oxy‐F) and poly[(9,9‐bis((6′‐(N,N,N‐trimethylammonium)hexyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (WPF‐oxy‐F) compounds are developed and the use of these water‐soluble polymers as an interfacial layer for low‐cost poly(3‐hexylthiophene):phenyl‐C61 butyric acid methyl ester (P3HT:PCBM) organic solar cells (OSCs) is investigated. When WPF‐oxy‐F or WPF‐6‐oxy‐F is simply inserted between the active layer and the cathode as an interfacial dipole layer by spin‐coating water‐soluble polyfluorenes, the open‐circuit voltage (Voc), fill factor (FF), and power‐conversion efficiency (PCE) of photovoltaic cells with high work‐function metal cathodes, such as Al, Ag, Au, and Cu, dramatically increases. For example, when WPF‐6‐oxy‐F is used with Al, Ag, Au, or Cu, regardless of the work‐function of the metal cathode, the Voc is 0.64, 0.64, 0.58, and 0.63 V, respectively, approaching the original value of the P3HT:PCBM system because of the formation of large interfacial dipoles through a reduction of the metal work‐function. In particular, introducing WPF‐6‐oxy‐F into a low‐cost Cu cathode dramatically enhanced the device efficiency from 0.8% to 3.36%.  相似文献   

18.
We report on the morphological aspects of thin films prepared from a blue–green light‐emitting conjugated polymer, (methyl‐substituted ladder‐type poly(p‐phenylene, mLPPP)), blended with a solid‐state electrolyte composed either by a crown ether, dicyclohexano‐18‐crown‐6 (DCH18C6), or a high‐molecular‐weight poly(ethylene oxide) (HMWPEO), and a Li salt, lithium trifluoromethanesulfonate (LiCF3SO3, Li triflate (LiTf)), as they have been successfully applied in light‐emitting electrochemical cells (LECs). The surface morphologies of the blend layers were investigated using atomic force microscopy (AFM) in tapping mode, and the ion distribution was probed using X‐ray analysis by means of energy‐dispersive X‐ray spectrometry (EDXS) in the scanning electron microscope (SEM). We show that the two different phase‐separation processes, the complexation tendencies of the ionic species as well as the ionic transport numbers, have tremendous influence on the performances of the corresponding LECs, revealing either rectifying or symmetric optoelectronic characteristics in forward and reverse bias directions. This opens up new possibilities for tuning the optoelectronic properties of ion‐supported organic electronic devices.  相似文献   

19.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

20.
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐coN‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号