首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short‐segmented block copolymers of poly(butylene succinate‐co‐butylene fumarate) were synthesized and their crystallinity and crosslinking behavior were investigated. 1H NMR was used to characterize the microstructure and composition of the copolyesters. Molecular weight determination was performed using gel permeation chromatography. Based on the DSC results all copolyesters were crystalline and the degree of crystallinity of the copolymers did not change with butylene fumarate mole fraction due to co‐crystallization of the butylene succinate and butylene fumarate groups. Crosslinked copolyesters showed a lower crystallization rate and degree of crystallinity while the crystallization temperature shifted to higher temperatures compared with uncrosslinked copolyesters due to the formation of nucleating agents by crosslinkages. Photo‐DSC was used to investigate the crosslinking kinetics for UV‐initiated photo‐curing. Three kinetics parameters including the rate constant (k) and the orders of the initiation and propagation reactions (m and n, respectively) were determined for the quenched and unquenched copolymers. © 2016 Society of Chemical Industry  相似文献   

2.
A series of aliphatic biodegradable poly (butylene succinate‐co‐ethyleneoxide‐co‐DL ‐lactide) copolyesters were synthesized by the polycondensation in the presence of dimethyl succinate, 1,4‐butanediol, poly(ethylene glycol), and DL ‐oligo(lactic acid) (OLA). The composition, as well as the sequential structure of the copolyesters, was carefully investigated by 1H‐NMR. The crystallization behaviors, crystal structure, and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry, wide angle X‐ray diffraction, and polarizing optical microscopy, respectively. The results indicate that the sequence length of butylene succinate (BS) decreased as the OLA feed molar ratio increasing. The crystallization behavior of the copolyesters was influenced by the composition and sequence length of BS, which further tuned the mechanical properties of the copolyesters. The copolyesters formed the crystal structures and spherulites similar to those of PBS. The incorporation of more content of ethylene oxide (EO) units into the copolyesters led to the enhanced hydrophilicity. The more content of lactide units in the copolyesters facilitated the degradation in the presence of enzymes. The morphology of the copolyester films after degradation was also studied by the scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Branched poly(butylene succinate) (PBS) copolymers were synthesized, from succinic acid (SA), 1,4‐butanediol (1,4‐BD), and 1,2‐octanediol (1,2‐OD) through a two‐step process containing esterification and polycondensation, with different mole fractions of 1,2‐OD segments. The branched PBS copolymers were characterized with 1H‐NMR, differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), thermogravimetric analysis (TGA), dynamic rheological testing, and tensile properties analysis. The results of DSC and WAXD show that, with the increasing of the 1,2‐OD segments content, the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), and the degree of crystallinity (Xc) decrease. While the crystal structure of PBS does not change by introducing 1,2‐OD segments. The results of TGA and dynamic rheological testing indicate that the thermal stability of neat PBS is improved with the addition of 1,2‐OD segments. The incorporation of 1,2‐OD segments has some effects on the rheological properties of PBS, such as complex viscosities (|η*|), storage modulus (G′), and loss modulus (G″). Tensile testing demonstrates that the elongation at break is improved significantly with increasing 1,2‐OD segments content, but without a notable decrease of tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Poly(ethylene succinate) (PES), poly(butylene succinate) (PBS), and PES‐rich copolyesters were synthesized using an effective catalyst, titanium tetraisopropoxide. PES was blended with minor amounts of PBS for the comparison. The compositions of the copolyesters and the blends were determined from NMR spectra. Their thermal properties were studied using a differential scanning calorimeter (DSC), a temperature modulated DSC (TMDSC), and a thermogravimetric analyzer. No significant difference exists among the thermal stabilities of these polyesters and blends. For the blends, the reversible curves of TMDSC showed a distinct glass‐rubber transition temperature (Tg), however, the variation of the Tg values with the blend compositions was small. Isothermal crystallization kinetics and the melting behavior after crystallization were examined using DSC. Wide‐angle X‐ray diffractograms (WAXD) were obtained for the isothermally crystallized specimens. The results of DSC and WAXD indicate that the blends have a higher degree of crystallinity and a higher melting temperature than those of the corresponding copolymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
In this exploration of novel biodegradable polyesters, multiblock copolymers based on poly(butylene succinate) (PBS) and poly(1,2‐propylene terephthalate) (PPT) were successfully synthesized with hexamethylene diisocyanate as a chain extender. The amorphous and rigid PPT segment was chosen to modify PBS. The structures of the polymers were characterized using 1H NMR and 13C NMR spectroscopy, gel permeation chromatography and wide‐angle X‐ray diffraction; the physical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, mechanical testing and enzymatic degradation. The results indicate that the copolymers possess satisfactory mechanical and thermal properties, with impact strength 186% higher than that of PBS homopolymer, while tensile strength, flexural strength, thermal stability and melting point (Tm) are slightly decreased. Crystallization and biodegradation rates are still acceptable at 5 wt% PPT, although they are decreased by the introduction of PPT. The addition of appropriate amounts of PPT can improve the impact strength effectively without an obviously deleterious effect on tensile strength, flexural strength, thermal stability, Tm, crystallization rate and biodegradability. This study describes a convenient route to novel multiblock copolymers comprising crystallizable aliphatic and amorphous aromatic polyesters, which are promising for commercialization as biodegradable materials. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
A series of biodegradable isosorbide‐based copolyesters poly(butylene succinate‐co‐isosorbide succinate‐co‐polyethyleneoxide succinate) (PBxIyEzS) were synthesized via bulk polycondensation in the presence of dimethyl succinate (DMS), 1,4‐butanediol (BDO), poly(ethylene glycol) (PEG) and isosorbide (ISO). The crystallization behaviors, crystal structure and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization behavior of the copolyesters was influenced by the content of isosorbide succinate (IS) and polyethyleneoxide succinate (PEOS) units, which further tuned the mechanical and biodegradable properties of the copolyesters. The PBxIyEzS copolyesters, compared to pure poly(butylene succinate), showed lower crystallization temperature, melting temperature, degree of crystallinity and degradation rate while a significant increase in glass transition temperature with increasing isosorbide content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Series of copolyesters based on poly(propylene succinate) (PPS) and poly(butylene succinate) (PBS), which can be produced from biological feedstock, and postconsumer poly(ethylene terephthalate) (PET) were synthesized with the aim of developing sustainable materials, which combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic polyesters were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,3‐propanediol, and 1,4‐butanediol followed by melt reaction with PET in bulk. The content of PET segments in the polymer chains was varied from about 10 to 100 wt % per 100 wt % PPS or PBS. The effect of the introduction of the PET segments on the structure, thermal, physical, and mechanical properties was investigated. The composition and structure of these aliphatic/aromatic copolyesters were determined by NMR spectroscopy. The thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The level of crystallinity was studied by means of DSC and wide‐angle X‐ray scattering. A depression of melting temperature and a reduction of crystallinity of copolyesters with increasing content of PET segments were observed. Consequently, the tensile modulus and strength of copolyesters decreased, and the elongation at break increased with PET content in the range of 10?50 wt %. Thus, depending on PET content, the properties of copolyesters can be tuned ranging from semicrystalline polymers possessing good tensile modulus (380 MPa) and strength (24 MPa) to nearly amorphous polymer of high elongation (~800%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39815.  相似文献   

8.
It is indispensable to investigate hydrolytic degradation behavior to develop novel (bio)degradable polyesters. Biobased and biodegradable copolyesters poly(butylene adipate‐co ‐butylene furandicarboxylate) (PBAF) and poly(butylene succinate‐co ‐butylene furandicarboxylate) (PBSF) with BF molar fraction (?BF) between 40 and 60% were synthesized in this study. The hydrolytic degradation of film samples was conducted in a pH 7.0 PBS buffer solution at 25 °C. Slight mass loss (1–2%) but significant decrease in intrinsic viscosity (35–44%) was observed after 22 weeks. The apparent hydrolytic degradation rate decreased with increasing ?BF and initial crystallinity. Meanwhile, PBAFs degraded slightly faster than PBSFs with the same composition. The ?BF and crystallinity increased slowly with degradation time, suggesting the aliphatic moiety and the amorphous region are more susceptible to hydrolysis. And high enough tensile properties were retained after hydrolysis degradation, indicating PBAF and PBSF copolyesters are hydrolytically degradable, with tunable hydrolytic degradation rate and good balance between hydrolytic degradability and durability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44674.  相似文献   

9.
BACKGROUND: To obtain a biodegradable thermoplastic elastomer, a series of poly(ester‐ether)s based on poly(butylene succinate) (PBS) and poly(propylene glycol) (PPG), with various mass fractions and molecular weights of PPG, were synthesized through melt polycondensation. RESULTS: The copolyesters were characterized using 1H NMR, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, mechanical testing and enzymatic degradation. The results indicated that poly(ester‐ether)s with high molecular weights were successfully synthesized. The composition of the copolyesters agreed very well with the feed ratio. With increasing content of the soft PPG segment, the glass transition temperature decreased gradually while the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased. Mechanical testing demonstrated that the toughness of PBS was improved significantly. The elongation at break of the copolyesters was 2–5 times that of the original PBS. Most of the poly(ester‐ether) specimens were so flexible that they were not broken in Izod impact experiments. At the same time, the enzymatic degradation rate of PBS was enhanced. Also, the difference in molecular weight of PPG led to properties being changed to some extent among the copolyesters. CONCLUSION: The synthesized poly(ester‐ether)s having excellent flexibility and biodegradability extend the application of PBS into the areas where biodegradable thermoplastic elastomers are needed. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
In this study, various biodegradable materials, including poly(butylene succinate) (PBS), poly(hexamethylene succinate) (PHS), and poly(butylene succinate-co-hexamethylene succinate)s (P[BS-co-HS]s) containing different hexamethylene succinate (HS) contents, were prepared. The compositions, thermal properties, mechanical properties, hydrophilicity, and enzymatic hydrolyzability of the materials were investigated by various techniques. The results showed that the composition of the copolyesters was similar to the feeding ratio of the reactants. The melting and crystallization temperatures, thermal stability, and degree of crystallinity of the copolyesters decreased for low HS content and increased for high HS content. P(BS-co-HS)s containing 52 mol% HS exhibited low crystallization temperature (Tc), melting temperature (Tm), degree of crystallinity (Xc), and high hydrophilicity, elongation at break and enzymatic hydrolyzability. We also observed that low degree of crystallinity and high crystal defects, hydrophilicity, and high elongation at break could improve the enzymatic hydrolyzability of the materials.  相似文献   

11.
The positional effect of sulfonate groups on poly(butylene succinate) (PBS) microstructure was investigated. In this regard, unsaturated poly(butylene fumarate) (PBF) and poly(butylene succinate‐ran‐fumarate) copolymers, synthesized via esterification/polycondensation reactions, were modified through post‐polymerization modification. The progress of the PBF sulfonation reaction was analyzed via 1H NMR, dynamic light scattering and field emission SEM. The microstructure and thermal behavior of the functional polyesters were studied through DSC, TGA, elemental analysis and 1H NMR. Based on the results, the sulfonation reaction of unsaturated polymer chains, which are not experiencing a phase separation, is instantaneous, but sulfonation of the chains that have formed colloidal particles is a time‐consuming process. Surprisingly, the outcomes of 1H NMR analysis revealed a kind of heterogeneity along the fully sulfonated PBS backbone, similar to what is usually observed for copolymers. This is due to the ability of sulfonate groups to locate in different sites and create various block types. Due to the attraction between sulfonate groups, they tend to attach to the chain such that they provide the greatest number of second type blocks (containing two sulfonate groups). The randomness of sulfonated polymers after the sulfonation reaction was increased compared to that of the corresponding unsaturated copolymers. Increasing the content of sulfonate groups also led to a significant decrease in the thermal resistance (ca 120 °C) and crystallinity, along with a dramatic increase in ash content and Tg (up to 156 °C). © 2018 Society of Chemical Industry  相似文献   

12.
The phase behavior of poly(resorcinol phthalate‐block‐carbonate) (RPC) with engineering polyesters was investigated by using differential scanning calorimeter (DSC) and dynamic mechanical analysis. RPC was found to form miscible blends with poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), and poly(cyclohexylmethylene terephthalate) (PCT), but was partially miscible with poly(1,4‐cyclohexanedimethylene‐1,4‐cyclohexanedicarboxylate) (PCCD) in the melt state and below the melting temperature (Tm). The degree of melting‐point depression indicates that the RPC is most miscible with PCT followed by PET and then PBT. Furthermore, with the help of empirical DSC data and the Nishi–Wang equation, the interaction parameters between RPC and PET, PBT, and PCT were quantified to be ?0.36, ?0.33, and ?0.54, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Poly(butylene succinate) (PBS) and its copolymers, poly(butylene succinate‐co‐adipate) (PBSA) and poly(butylene‐co‐hexylene succinate) (PBHS), were synthesized by direct polyesterification of corresponding diols and dicarboxylic acids. Dimethyl benzene was used as solvent and water‐removing agent. Several catalysts were used to study the esterification of butanediol and succinic acid. Among them, SnCl2 demonstrated superior catalysis behavior. Kinetic behaviors of the synthesis of PBS, PBSA, and PBHS were investigated using SnCl2 as catalyst. By using a water trap containing a 4‐Å molecular sieve, a relatively faster reaction rate was achieved and the molecular weight of some polyesters surpassed 30,000. The variation of molecular weight distribution during the polymerization was monitored by GPC and Mw/Mn demonstrated a trend of decrease with the reaction time. The melting point (Tm) and the glass‐transition temperature (Tg) were measured by DSC technique. The results show that the incorporation of a third monomer unit to PBS lowered Tg and Tm. The biodegradation test was carried out both in the laboratory and in outdoor soil burial. The copolyesters displayed a faster degradation rate than that of PBS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 982–990, 2003  相似文献   

14.
The miscibility of poly(butylene succinate) (PBS)/poly(butylene thiodiglycolate) (PBTDG) blends was investigated by DSC technique. PBS and PBTDG were completely immiscible in as blended‐state, as evidenced by the presence of two Tgs at ?34 and ?48°C, respectively. The miscibility changes upon mixing at elevated temperature: the original two phases merged into a single one because of transesterification reactions. Poly(butylene succinate/thiodiglycolate) block copolymers, prepared by reactive blending of the parent homopolymers, were studied to investigate the effects of transesterification reactions on the molecular structure and solid‐state properties. 13C‐NMR analysis evidenced the formation of copolymers whose degree of randomness increased with mixing time. Thermal characterization results showed that all the samples were semicrystalline, with a soft rubbery amorphous phase and a rigid crystal phase whose amount decreased by introducing BTDG units into the PBS chain (20 ≤ χc ≤ 41). Lastly, the mechanical properties were found strictly related to crystallinity degree (χc), the random copolymer, exhibiting the lowest elastic modulus (E = 61 MPa) and the highest deformation at break (εb (%) = 713). © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
An aliphatic/aromatic polyester blend has been dealt with in this study. As an aliphatic polyester, poly(butylene succinate) (PBS) was used, which is thought to possess biodegradability, but it is relatively expensive. It has been blended with poly(butylene terephthalate) (PBT) in order to obtain a biodegradable blend with better mechanical properties and lower cost. The miscibilities of PBS–PBT blends were examined not only from the changes of Tg but also from log G′–log G" plots. Dynamic mechanical thermal analyzer (DMTA) was an appropriate, sensitive method to obtain the glass transitions properly. Thermal stabilities of PBS and PBT were also verified at the temperature of 240°C. A transesterification reaction between two polyesters at 240°C was hardly detectable so that it did not affect the miscibilities and properties of the blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 945–951, 1999  相似文献   

17.
A series of aliphatic poly(ether–ester)s based on flexible poly(tetramethylene oxide) (PTMO) and hard poly (butylene succinate) (PBS) segments were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,4‐butanediol, and α,ω‐hydroxy‐terminated PTMO (Mn = 1000 g/mol) in the bulk. The content of soft PTMO segments in the polymer chains was varied from 10 to 50 mass %. The effect of the introduction of the soft segments on the structure, thermal, and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of the aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using DSC. The degree of crystallinity was determined by means of DSC and WAXS. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests on polymer films in phosphate buffer solution with Candida rugosa lipase at 37°C, was compared with hydrolytic degradation in the buffer solution. Viscosity measurements confirmed that there was no change in molecular weight of the copolyesters leading to the conclusion that the degradation mechanism of poly(ester–ether)s based on PTMO segments occurs through the surface erosion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
N-hexenyl side branches were introduced into poly(butylene succinate) (PBS) by polymerization of succinic acid (SA) with 1,4-butanediol (BD) in the presence of 7-octene-1,2-diol (OD). Thermal properties and biodegradability of the aliphatic polyesters were investigated before and after epoxidation of the pendant double bonds. The glass-transition temperature (Tg) decreased with the branching density to give a minimum at 0.03 mol of branching units per mole of structural units. Thereafter, Tg increased due to the in situ crosslinking of the unsaturated groups during the differential scanning calorimetry (DSC) measurements. N-Hexenyl side branches decreased melting temperature (Tm) more significantly than ethyl side branches, but the effect was on par with that by n-octyl branches. Epoxidation of the double bonds decreased Tm and melting enthalpy (ΔHm), but increased Tg of the aliphatic polyester. Biodegradability was enhanced to some extent by the presence of n-hexenyl side branches. However, the epoxidation of the unsaturated groups did not notably affect the biodegradability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2219–2226, 2001  相似文献   

19.
Effect of ethyl and n‐octyl branches on the properties of poly(ethylene adipate) (PEA) and poly(butylene succinate) (PBS) were investigated. Glass transition and melting temperature, crystallinity, melt viscosity, and spherulite growth rate were decreased with an increase in the degree of the chain branches. Introduction of ethyl branches as well as n‐octyl branches into PEA did not improve the tensile strength and modulus, while it reduced elongation and tear strength significantly. The presence of glycerol units less than 0.05 mol/mol of diacid units in PEA as well as in PSB also brought about damaging effects on the properties. Additional amount of glycerol units in the polyesters resulted in the formation of gel. However, addition of n‐octyl branches improved elongation and tear strength of PBS considerably without a notable decrease of tensile strength and modulus. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 547–555, 2000  相似文献   

20.
Long‐chain branched poly(butylene succinate) were synthesized through a two‐step process of esterification and polycondensation, using 1,2,4‐butanetriol (1,2,4‐BT) as a long‐chain branching agent. The effect of long‐chain branches on the crystallization behaviors, rheological properties, and tensile properties was investigated systematically. The results of differential scanning calorimetry and polarized optical microscopy showed that with the increasing of 1,2,4‐BT segments, the crystallization temperatures and glass transition temperatures increase slightly, while the relative crystallinity degree decreases gradually. Also, the double‐banded extinction patterns with periodic distance along the radial direction were observed in the spherulites of long‐chain branched poly(butylene succinate), similar to that of linear poly(butylene succinate) (PBS). The result of wide‐angle X‐ray diffraction indicated that the incorporation of 1,2,4‐BT segments had little effect on the crystal structure of PBS. However, based on data from rheology and tensile testing, the viscoelastic properties of long‐chain branched PBS under shear flow were different from the linear PBS. For example, the complex viscosities, storage modulus, and loss modulus of long‐chain branched PBS at low frequency were significantly enhanced in comparison with those of linear PBS. In addition, long‐chain branched PBS showed higher tensile strength than that of linear PBS without notable decrease in the elongation at break when compared with linear PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号