共查询到20条相似文献,搜索用时 15 毫秒
1.
针对滚动轴承的故障诊断问题,提出了一种基于遗传算法的BP神经网络滚动轴承故障诊断方法。以BP神经网络的误差为目标函数,利用遗传算法进行BP神经网络的权值和阈值优化,并用优化后的BP神经网络进行故障诊断。通过MATLAB仿真,结果表明遗传算法优化的BP神经网络相比传统的BP神经网络具有更好的诊断效率和准确度。 相似文献
2.
基于BP神经网络的滚动轴承故障诊断研究 总被引:4,自引:0,他引:4
通过对滚动轴承振动信号的分析处理,提取能够反映轴承运行状态的特征量作为BP神经网络的输入,并用BP算法对该网络进行训练,利用神经网络的智能性来判断轴承所属的故障类型。仿真结果表明,该方法实用有效。 相似文献
3.
为更好地对滚动轴承进行状态监测和故障诊断,采集3种不同状态下的滚动轴承振动信号,根据振动信号特点提取其时域和频域的相关特征,然后分别利用SVM(支持向量机)和BP神经网络进行模式识别。不断减少每种状态下训练样本集的个数,利用2种不同的方法进行模式识别。当每种状态下的样本个数为3个时,支持向量机仍然能准确地将测试样本进行分类,而BP神经网络完全无法识别。实验结果表明,支持向量机比BP神经网络更适合于小样本的故障诊断。 相似文献
4.
5.
6.
7.
8.
唐立力 《机械工程与自动化》2014,(3)
针对滚动轴承的故障诊断问题,设计了一种最优隐层BP神经网络,借助经验公式确定隐层单元数的取值范围,进行计算平均迭代次数和均方误差来寻找最优隐层单元数。通过MATLAB仿真,结果表明该BP神经网络具有较高的诊断效率和准确度。 相似文献
9.
BP神经网络在滚动轴承早期故障诊断中的应用 总被引:4,自引:1,他引:4
滚动轴承是旋转机械中应用普扁而又易损的元件之一,其故障在机械故障中占有很大的比例.因此,轴承故障诊断、特别是早期诊断很受重视.本文将神经网络应用于轴承早期故障诊断,简要说明了BP神经网络的基本原理、算法及特点,介绍了实验数据的分析过程和参数选择原则.实验结果表明,选择适当的网络结构进行训练、学习和检验,可以把良好轴承、内环缺陷轴承、外可缺陷轴承、滚子缺陷轴承及具有三种综合缺陷的轴承区分开来,并能初步估计出缺陷的大小. 相似文献
10.
11.
12.
根据滚动轴承振动信号的频域变化特征,利用小波分析对其建立频域特征向量,准确地提取了故障的特征信息,结合RBF神经网络训练速度快的优点,将RBF神经网络应用于轴承故障特征的选择,并利用所确定的特征及RBF分类器进行故障诊断。实验结果表明,该方法可实现滚动轴承故障的可靠诊断。 相似文献
13.
对BP神经网络的结构与原理进行了简要概述,将BP神经网络技术运用于齿轮箱的故障诊断中 ,以齿轮振动信号的时域特征作为神经网络输入,齿轮的主要故障形式为网络输出,利用经 BP算法训练后的该网络对齿轮故障进行诊断,取得了较好的效果. 相似文献
14.
通过介绍神经网络的模型算法,根据齿轮的四种故障类型,采用BP神经网络对其进行训练和诊断,得到了较为理想的结果,为及早发现和预防机械故障提供了可靠的理论依据。 相似文献
15.
16.
介绍了Elman神经网络的模型及原理,阐述了滚动轴承故障诊断的技术路线;通过轴承故障试验台采集滚动轴承振动信号并提取信号特征数据,利用构建的Elman神经网络,实现了轴承的智能诊断。与传统BP神经网络诊断相比,Elman神经网络综合诊断性能更优。 相似文献
17.
18.
19.
基于改进概率神经网络的滚动轴承故障诊断 总被引:1,自引:0,他引:1
探讨了经典概率神经网络(PNN)作为模式分类器时的相关原理,针对传统PNN采用相同平滑因子而导致识别率低的问题,提出了一种改进概率神经网络(IPNN),其平滑因子根据模式类别的不同而自适应变化,从而使隐含层的神经元具有更高的适应性,更好地表征了特征向量与模式状态的关联性,反映了输入特征向量对于正确分类结果的实际作用,并将该IPNN应用于滚动轴承的故障诊断中。实验结果表明:IPNN能够有效提高滚动轴承故障分类的准确性,比经典PNN和常用的误差反向传播神经网络(BPNN)具有更高的识别率。 相似文献
20.
滚动轴承是动力设备的重要零部件之一,其故障具有类型多、特性多的特点.为提高滚动轴承故障诊断的效率和准确性,本文介绍了BP神经网络算法在滚动轴承故障诊断中的原理及有关应用,同时分别介绍了经过粒子群优化和Pearson相关性分析优化的改进BP神经网络在滚动轴承故障诊断中的应用. 相似文献