首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single‐walled carbon nanotubes (SWNTs) are recognized as the ultimate carbon fibers for high‐performance, multifunctional composites. The remarkable multifunctional properties of pristine SWNTs have proven, however, difficult to harness simultaneously in polymer composites, a problem that arises largely because of the smooth surface of the carbon nanotubes (i.e., sidewalls), which is incompatible with most solvents and polymers, and leads to a poor dispersion of SWNTs in polymer matrices, and weak SWNT–polymer adhesion. Although covalently functionalized carbon nanotubes are excellent reinforcements for mechanically strong composites, they are usually less attractive fillers for multifunctional composites, because the covalent functionalization of nanotube sidewalls can considerably alter, or even destroy, the nanotubes' desirable intrinsic properties. We report for the first time that the molecular engineering of the interface between non‐covalently functionalized SWNTs and the surrounding polymer matrix is crucial for achieving the dramatic and simultaneous enhancement in mechanical and electrical properties of SWNT–polymer composites. We demonstrate that the molecularly designed interface of SWNT–matrix polymer leads to multifunctional SWNT–polymer composite films stronger than pure aluminum, but with only half the density of aluminum, while concurrently providing electroconductivity and room‐temperature solution processability.  相似文献   

2.
Solution‐processing hybrid metal halide perovskites are promising materials for developing flexible thin‐film devices. This work reports the substrate effects on the spin–orbit coupling (SOC) in perovskite films through thermal expansion under thermal annealing. X‐ray diffraction (XRD) measurements show that using a flexible polyethylene naphthalate (PEN) substrate introduces a smaller mechanical strain in perovskite MAPbI3?xClx films, as compared to conventional glass substrates. Interestingly, the linear/circular photoexcitation‐modulated photocurrent studies find that decreasing mechanical strain gives rise to a weaker orbit–orbit interaction toward decreasing the SOC in the MAPbI3?xClx films prepared on flexible PEN substrates relative to rigid glass substrates. Simultaneously, decreasing the mechanical strain causes a reduction in the internal magnetic parameter inside the MAPbI3?xClx films, providing further evidence to show that introducing mechanical strain can affect the SOC in hybrid perovskite films upon using flexible substrates toward developing flexible perovskite thin‐film devices. Furthermore, thermal admittance spectroscopy indicates that the trap states are increased in the perovskite films prepared on flexible PEN substrates as compared to glass substrates. Consequently, PEN and rigid glass substrates lead to shorter and longer photoluminescence lifetimes, respectively. Clearly, these findings provide an insightful understanding on substrate effects on optoelectronic properties in flexible perovskite thin‐film devices.  相似文献   

3.
Using Raman spectroscopy, we demonstrate that the anisotropic interaction between single‐walled carbon nanotubes (SWNTs) and poly(methyl methacrylate) (PMMA) causes significant changes in the electronic properties of their composites. Two different procedures were used to prepare the composites: melt blending and in‐situ UV polymerization. Resonant Raman studies relate the electronic density of states (DOS) of the SWNTs to the corresponding vibration symmetry changes of both the PMMA and the SWNTs. Our results show that, in the melt‐blended sample, the SWNTs—originally semiconducting—became predominantly metallic. The changes in the electronic properties were also confirmed by dielectric constant measurements. We propose that the anisotropic interaction between PMMA and SWNTs in the melt‐blended composite is the dominant reason for the observed electronic character change.  相似文献   

4.
Ultrathin composite films consisting of mixtures of metallic (m‐) and semiconducting (s‐) single‐walled carbon nanotubes (SWNTs) with a conjugated block copolymer are developed from a solution‐based process. The electronic properties of the films are precisely controlled from metallic to semiconducting to insulating. The tunability of the electronic composite sheets is mainly attributed to (1) the efficient dispersion of SWNTs with a conjugated block copolymer in solution, (2) the control of the number of nanotubes by centrifugation, and (3) the individually networked deposition of SWNTs embedded in the conjugated block copolymer on the target substrate by spin‐coating. A highly reliable field‐effect transistor with a networked composite film is realized with a specific range of tube density and a high on/off current ratio of approximately 106 which resulted from the Schottky barriers evolved between the individual m‐ and s‐SWNTs in the network. There is also great freedom when choosing both the gate dielectrics and source‐drain electrodes for transistors containing the composite films. Furthermore, the fabricated electronic composites are highly transparent, flexible, and chemically robust and thus, they can be conveniently micropatterned by photolithography, as well as by unconventional transfer printing techniques.  相似文献   

5.
We report a new approach of reactive spinning to fabricate thermosetting cyanate ester micro‐scale diameter fibers with aligned single walled carbon nanotubes (SWNTs). The composite fibers were produced by first dispersing the SWNTs (1 wt %) in cyanate ester (CE) via solvent blending, followed by pre‐polymerization, spinning and then multiple‐stage curing. The pre‐polymerization, spinning and post‐spinning cure temperatures were carefully controlled to achieve good spun crosslinked fibers. Both pristine and amino‐functionalized SWNTs were used for the reinforced fiber spinning. Amino‐functionalized SWNTs (f‐SWNTs) were prepared by reacting acid‐treated SWNTs with toluene 2,4‐diisocyanate and then ethylenediamine (EDA). FTIR, optical microscopy and scanning electron microscopy (SEM) showed that the amino‐functionalized SWNTs were covalently and uniformly dispersed into the cyanate ester matrix and aligned along the fiber axis. The alignment was further confirmed using polarized Raman spectroscopy. The composite fibers with aligned amino‐functionalized SWNTs possess improved tensile properties with respect to neat CE fibers, showing 85, 140, and 420% increase in tensile strength, elongation and stress‐strain curve area (i.e., toughness), respectively. NH2‐functionalization of SWNTs improves their dispersibility, alignment and interfacial strength and hence tensile properties of composite spun fibers. Fiber spinning to align SWNTs using thermosetting resin is novel. Others have reported fiber spinning to align SWNTs in thermoplastics. However, thermosetting CE resins offer the advantages of low and controllable viscosity during spinning and reactivity with amino functional groups to enable f‐SWNT/CE covalent bonding.  相似文献   

6.
The fluorescent imidazolium salt (1,3‐bis(9‐anthracenylmethyl)imidazolium chloride, [bamim]Cl) has been grafted onto the surfaces of single‐walled carbon nanotubes (SWNTs) using an ion exchange strategy based on metathesis of the K+ ion in CO2K derivatized SWNTs with [bamim]+. The resulting SWNT‐[bamim] complex has been characterized with high‐resolution transmission electron microscopy (HR‐TEM), X‐ray photoelectron spectroscopy (XPS), elemental mapping, and elemental linear profiles analysis. A blue light emission can be observed at 392, 414 and 438 nm for SWNT‐[bamim] upon being excited at 254 nm. The quantum yield (QY) of the SWNT‐[bamim] complex (0.40) is much higher than that of SWNT/[bamim]Cl (0.02), used as a control, and prepared using a ππ stacking method, indicating that ion exchange is a far more effective strategy for retaining a high QY. Additionally, UV‐Vis‐NIR and Raman spectroscopy show that the SWNT‐[bamim] complex can maintain the one‐dimensional electronic states of SWNTs. Other imidazolium salts have also been successfully grafted onto SWNTs via the same strategy, indicating that the ion exchange process can serve as a universal strategy for the functionalization of SWNTs.  相似文献   

7.
Poly(3‐hexylthiophene) (P3HT) hybrids with single‐walled carbon nanotubes (SWNTs) were prepared using a series of SWNTs with various defect contents on their surfaces. The hybrids were synthesized by exploiting the ππ interaction between P3HT and the SWNTs, resulting in efficient dispersion of the carbon nanotubes in the P3HT solution. UV‐visible and photoluminescence (PL) spectra showed that the carbon nanotubes quench the PL of P3HT in the hybrids, indicating that electron transfer occurs from photo‐excited P3HT to the SWNTs. This electron transfer from P3HT to carbon nanotubes was disrupted by the presence of defects on the SWNT surfaces. However, the PL lifetime of P3HT in the hybrids was found to be the same as that of pure P3HT in solution, indicating the formation of a ground‐state non‐fluorescent complex of P3HT/SWNTs.  相似文献   

8.
Highly stable graphene oxide (GO)‐based multilayered ultrathin films can be covalently immobilized on solid supports through a covalent‐based method. It is demonstrated that when (3‐aminopropyl) trimethoxysilane (APTMS), which works as a covalent cross‐linking agent, and GO nanosheets are assembled in an layer‐by‐layer (LBL) manner, GO nanosheets can be covalently grafted on the solid substrate successfully to produce uniform multilayered (APTMS/GO)N films over large‐area surfaces. Compared with conventional noncovalent LBL films constructed by electrostatic interactions, those assembled using this covalent‐based method display much higher stability and reproducibility. Upon thermal annealing‐induced reduction of the covalent (APTMS/GO)N films, the obtained reduced GO (RGO) films, (APTMS/RGO)N, preserve their basic structural characteristics. It is also shown that the as‐prepared covalent (APTMS/RGO)N multilayer films can be used as highly stable source/drain electrodes in organic field‐effect transistors (OFETs). When the number of bilayers of the (APTMS/RGO)N film exceeds 2 (ca. 2.7 nm), the OFETs based on (APTMS/RGO)N electrodes display much better electrical performance than devices based on 40 nm Au electrodes. The covalent protocol proposed may open up new opportunities for the construction of graphene‐based ultrathin films with excellent stability and reproducibility, which are desired for practical applications that require withstanding of multistep post‐production processes.  相似文献   

9.
Cilia are wavy hair‐like structures that extend outward from surfaces of various organisms. They are classified into two general categories, primary cilia, which exhibit sensing attributes, and motile cilia, which exert mechanical forces. A new poly(2‐(N,N‐dimethylamino)ethyl methacrylate‐co‐n‐butyl acrylate‐coN,N‐(dimethylamino) azobenzene acrylamide) (p(DMAEMA/nBA/DMAAZOAm) copolymer is prepared using colloidal synthesis, which, upon coalescence, form films capable of generating surfaces with cilia‐like features. While film morphological features allow the formation of wavy whiskers, the chemical composition of the copolymer facilitates chemical, thermal, and electromagnetic responses manifested by simultaneous shape and color changes as well as excitation wavelength dependent fluorescence. These studies demonstrate that synthetically produced polymeric films can exhibit combined thermal, chemical, and electromagnetic sensing leading to locomotive and color responses, which may find numerous applications in sensing devices, intelligent actuators, defensive mechanisms, and others.  相似文献   

10.
A range of optical probes are used to study the nanoscale‐structure and electronic‐functionality of a photovoltaic‐applicable blend of the carbazole co‐polymer poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the electronic accepting fullerene derivative (6,6)‐phenyl C70‐butyric acid methyl ester (PC70BM). In particular, it is shown that the glass transition temperature of a PCDTBT:PC70BM blend thin‐film is not sensitive to the relative blend‐ratio or film thickness (at 1:4 blending ratio), but is sensitive to casting solvent and the type of substrate on which it is deposited. It is found that the glass transition temperature of the blend reduces on annealing; an observation consistent with disruption of ππ stacking between PCDTBT molecules. Reduced ππ stacking is correlated with reduced hole‐mobility in thermally annealed films. It is suggested that this explains the failure of such annealing protocols to substantially improve device‐efficiency. The annealing studies demonstrate that the blend only undergoes coarse phase‐separation when annealed at or above 155 °C, suggesting a promising degree of morphological stability of PCDTBT:PC70BM blends.  相似文献   

11.
Nanostructures are important for a wide area of applications, but are very often difficult to fabricate. A novel and basic approach for controlled nanofilament growth in an organic/inorganic composite material is demonstrated. Thin films of MoO3‐doped 4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl are grown via vacuum sublimation and analyzed using advanced electron microscopy and spectroscopy techniques. Using electron spectroscopic imaging in the core‐loss and low‐loss regime, MoO3 agglomerations are identified for different doping concentrations. A 3D reconstruction of the thin film yielded by electron tomography reveals a filamentous structure of MoO3 within the organic matrix. These filaments are preferentially oriented along the growth direction and are only a few nanometers in diameter. Furthermore, control of the filament growth is possible by changing the substrate temperature because for composites grown on substrates cooled to 120 K MoO3 agglomeration cannot be detected.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) have emerged as one of the leading additives for improving the thermoelectric properties of organic materials due to their unique structure and excellent electronic transport properties. However, since as-grown SWNTs possess different chirality, it is of high interest to determine the influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films. Herein, we utilized metallic SWNTs (SWNT-M) and semiconducting SWNTs (SWNT-S) to prepare SWNTs/PANI composite films and studied their thermoelectric properties, respectively. Experimentally, the maximum thermoelectric power factor reached 51 μW m−1 K−2 for the 19 wt% SWNT-S/PANI composite films, while that value was only 16 μW m−1 K−2 for the 19 wt% SWNT-M/PANI composite films. The better power factor of SWNT-S/PANI composite films may be attributed to the more significantly enhanced Seebeck coefficient resulting from the effective energy filtering effect at the interfaces between SWNT-S and PANI. Our results reveal the influence of electronic type of SWNTs on the thermoelectric properties of composites, which will drive ongoing efforts to utilize SWNTs as fillers in nanocomposites for optimal thermoelectric properties.  相似文献   

13.
In the present work, we correlate the photophysical and photovoltaic properties with the respective film morphologies of three different blends made of the fluorene copolymers poly(9,9′‐dioctylfluorene‐co‐benzothiadiazole) (F8BT), poly[9,9′‐dioctylfluorene‐coN‐(4‐butylphenyl)diphenylamine] (TFB), and poly[9,9′‐dioctyfluorene‐co‐bis‐N,N′‐(4‐butylphenyl)‐bis‐N,N‐phenyl‐1,4‐phenylenediamine] (PFB) when blended with a perylene tetracarboxylic diimide (PDI) derivative. Additional photophysical studies in reference PDI blends of the electronically inert poly(styrene) matrix address the enhanced PDI intermolecular solid‐state interactions. We resolve the process of resonance energy transfer from excited polymer hosts to PDI and the process of photoinduced hole transfer from PDI to the polymer hosts. We deduce the efficiency of charge‐transfer PDI photoluminescence (PL) quenching and we discuss the power‐law PL kinetics seen in the as‐spun systems. Next we determine the dependence of the device external quantum efficiency (EQE) of these blends, in a range of annealing temperatures and PDI loadings. Differential scanning calorimetry enables precise selection of annealing temperatures. Optical microscopy shows that annealing enhances the order characteristics in the PDI aggregates in the F8BT:PDI system. In the case of the TFB:PDI and PFB:PDI blends, AFM studies suggest the formation of PDI‐rich domains on the film/air interface. The degree of order in the ππ stacking of the PDI monomers is inferred by the UV–Vis and PL spectra of the blends. The extent of order characteristics in PDI aggregates is correlated with the thermal properties of the hosts that control PDI molecular mobility upon annealing. The efficient dispersion of disrupted PDI crystallites is proposed to form appropriate percolation networks that favor balanced extraction of photogenerated carriers.  相似文献   

14.
Safety issues remain a major obstacle toward large‐scale applications of high‐energy lithium‐ion batteries. Embedding thermo‐responsive polymer switching materials (TRPS) into batteries is a potential strategy to prevent thermal runaway, which is a major cause of battery failures. Here, thin, flexible, highly responsive polymer nanocomposites enabled by bio‐inspired nanospiky metal (Ni) particles are reported. These unique Ni particles are synthesized by a simple aqueous reaction at gram‐scale with controlled surface morphology and composition to optimize electrical properties of the nanocomposites. The Ni particles provide TRPS films with a high room‐temperature conductivity of up to 300 S cm?1. Such TRPS composite films also have a high rate (<1 s) of resistance switching within a narrow temperature range, good reversibility upon on/off switching, and a tunable switching temperature (Ts; 75 to 170 °C) that can be achieved by tailing their compositions. The small size (≈500 nm) of Ni particles enables ready fabrication of thin and flexible TPRS films with thickness approaching 5 µm or less. These features suggest the great potential of using this new type of responsive polymer composite for more effective battery thermal regulation without sacrificing cell performance.  相似文献   

15.
Single‐walled carbon nanotubes (SWNTs) are functionalized through both covalent and noncovalent bonding approaches to enhance dispersion and interfacial bonding. The coefficient of thermal expansion (CTE) of the functionalized‐SWNT‐reinforced epoxy composites are measured with a thermal mechanical analyzer (TMA). Experimental results indicate that changes of the glass‐transition temperature (Tg) in functionalized SWNT–polymer composites are dependent upon the functionalization methods. The CTE below the glass‐transition temperature of nanocomposites with a 1 wt % loading of nanotubes is substantially diminished compared to a neat polymer. A reduction in the CTE of up to 52 % is observed for nanocomposites using functionalized nanotubes. However, the CTE above the Tg significantly increases because of the contribution from phonon mode and Brownian motions of a large number of SWNTs in resin‐crosslinked networks, but the increments are compromised by possible interfacial confinement. A tunable CTE induced through nanotube functionalization has application potentials for high‐performance composites, intelligent materials, and circuit protections.  相似文献   

16.
A nanoaggregated dispersed red 1‐grafted poly(N‐vinylcarbazole) (abbreviated PVDR) is self‐assembled via ππ stacking interactions of the carbazole groups in the polymer system after adding a solution of PVDR in N,N‐dimethylformamide to dichloromethane. Upon self‐assembly, the nanoaggregated PVDR film displays helical columnar stacks with large grain sizes, whereas a non‐aggregated PVDR film exhibits an amorphous morphology with smaller grain size. A write‐once read‐many‐times (WORM) memory device is shown whereby a pre‐assembled solution of PVDR is spin‐coated as the active layer and is sandwiched between an aluminum electrode and an indium‐tin‐oxide (ITO) electrode. This device shows very good memory performance, with an ON/OFF current ratio of more than 105 and a low misreading rate through the precise control of the ON and OFF states. The stability of the nanoaggregated PVDR device is much higher than that of the non‐nanoaggregated PVDR device. This difference in device stability under constant voltage stress can be mainly attributed to the difference in the film crystallinity and surface morphology. No degradation in current density was observed for the ON‐ and OFF‐states after more than one hundred million (108) continuous read cycles indicating that both states were insensitive to the read cycles. These results render the nanoaggregated PVDR polymer as promising components for high‐performance polymer memory devices.  相似文献   

17.
Despite multiple research approaches to prevent bacterial colonization on surfaces, device‐associated infections are currently responsible for about 50% of nosocomial infections in Europe and significantly increase health care costs, which demands development of advanced antibacterial surface coatings. Here, novel antimicrobial composite materials incorporating zinc oxide nanoparticles (ZnO NP) into biocompatible poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel layers are prepared by mixing the PNIPAAm prepolymer with ZnO NP, followed by spin‐coating and photocrosslinking. Scanning electron microscopy (SEM) characterization of the composite film morphology reveals a homogeneous distribution of the ZnO NP throughout the film for every applied NP/polymer ratio. The optical properties of the embedded NP are not affected by the matrix as confirmed by UV‐vis spectroscopy. The nanocomposite films exhibit bactericidal behavior towards Escherichia coli (E. coli) for a ZnO concentration as low as ≈0.74 μg cm?2 (1.33 mmol cm?3), which is determined by inductively coupled plasma optical emission spectrometry. In contrast, the coatings are found to be non‐cytotoxic towards a mammalian cell line (NIH/3T3) at bactericidal loadings of ZnO over an extended period of seven days. The differential toxicity of the ZnO/hydrogel nanocomposite thin films between bacterial and cellular species qualifies them as promising candidates for novel biomedical device coatings.  相似文献   

18.
We have developed a high performance liquid crystal (LC) alignment layer of ultra‐thin single wall carbon nanotubes (SWNTs) and a conjugated block copolymer nanocomposite that is solution‐processible for conventional twisted nematic (TN) LC cells. The alignment layer is based on the non‐destructive solution dispersion of nanotubes with a poly(styrene‐b‐ paraphenylene) (PS‐b‐PPP) copolymer and subsequent spin coating, followed by conventional rubbing without a post‐annealing process. Topographically grooved nanocomposite films with two dimensionally (2D) networked SWNTs embedded in a block copolymer matrix were created using a rubbing process in which bundles of SWNTs on the composite surface were effectively removed. The LCs were well aligned with a stable pre‐tilt angle of approximately 2° on our extremely transparent nanocomposite, which gave rise to superfast switching of the TN LC molecules that was approximately 3.8 ms, or four times faster than that on a commercial polyimide layer. Furthermore, the TN LCD cells containing our SWNT nanocomposite alignment layers exhibited low power operation at an effective switching voltage amplitude of approximately 1.3 V without capacitance hysteresis.  相似文献   

19.
Substrates with high transmittance and high haze are desired for increasing the light outcoupling efficiency of organic light‐emitting diodes (OLEDs). However, most of the polymer films used as substrate have high transmittance and low haze. Herein, a facile route to fabricate a built‐in haze glass‐fabric reinforced siloxane hybrid (GFRH) film having high total transmittance (≈89%) and high haze (≈89%) is reported using the scattering effect induced by refractive index contrast between the glass fabric and the siloxane hybrid (hybrimer). The hybrimer exhibiting large refractive index contrast with the glass fabric is synthesized by removing the phenyl substituents. Besides its optical properties, the hazy GFRH films exhibit smooth surface (Rsq = 0.2 nm), low thermal expansion (13 ppm °C−1), high chemical stability, and dimensional stability. Owing to the outstanding properties of the GFRH film, OLED is successfully fabricated onto the film exhibiting 74% external quantum efficiency enhancement. The hazy GFRH's unique optical properties, excellent thermal stability, outstanding dimensional stability, and the ability to perform as a transparent electrode enable them as a wide ranging substrate for the flexible optoelectronic devices.  相似文献   

20.
Poly(4,8‐didodecyl‐2,6‐bis‐(3‐methylthiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene) self‐assembled on appropriate substrates from solution and formed highly structured thin films at low temperatures. As an as‐prepared thin‐film semiconductor without thermal annealing, it exhibited excellent field‐effect transistor properties with mobility of ~ 0.15 cm2 V–1 s–1 in thin‐film transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号