首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
《应用化工》2022,(9):2041-2044
以黄姜皂素废水为原料,以Fe(2+)的含量为指标,研究进水pH、过氧化氢投加量、反应时间、温度及过氧化氢投加方式对黄姜皂素废水处理效果的影响。结果表明,反应的最佳条件为:进水pH为3. 0,过氧化氢投加量8%,反应时间2 h,温度30℃,过氧化氢投加方式为分三次投加。此时,废水中Fe(2+)的含量为指标,研究进水pH、过氧化氢投加量、反应时间、温度及过氧化氢投加方式对黄姜皂素废水处理效果的影响。结果表明,反应的最佳条件为:进水pH为3. 0,过氧化氢投加量8%,反应时间2 h,温度30℃,过氧化氢投加方式为分三次投加。此时,废水中Fe(2+)的含量达最少值0. 541 6 mg/L。  相似文献   

2.
郑莹  李杰 《广东化工》2016,(19):132-134
以腈纶废水为研究对象,探讨了Fe~(3+)投加量、pH、无机碳源投加量对SBBR反应器处理腈纶废水的效果及影响。结果表明,Fe~(3+)对腈纶废水中有机物的去除具有促进作用,对氨氮去除效果不明显。在DO为2~4 mg/L,HRT为48 h,Fe~(3+)投加量为20 mg/L,进水pH为7,无机碳源NaHCO_3补充量为0.25 mg/L的最优工况下,投加Fe~(3+)的SBBR反应器出水COD平均去除率可达65%,氨氮平均去除率可达47%。  相似文献   

3.
针对制药废水二级生化处理出水仍存在COD_(Cr)和色度偏高的不足,试验采用改性粉煤灰吸附-Fenton氧化法对其进行深度处理研究。探讨了pH值、H_2O_2投加量、Fe~(2+)投加量、反应时间等因素对COD_(Cr)去除率的影响。结果表明,在加热温度为400℃时粉煤灰改性效果最佳。在此最佳改性粉煤灰吸附条件下,当系统pH值为5、反应时间为2 h,H_2O_2(30%)投加量为300 mg/L、Fe~(2+)投加量为100 mg/L的条件下,制药废水二级生化出水中的COD_(Cr)去除率达到74.5%。  相似文献   

4.
以刚果红废水为模拟染料废水,通过Co~(2+)对传统Fenton试剂进行改性研究,探索Co~(2+)与Fe~(2+)摩尔比、H_2O_2的投加量、反应温度及pH值对刚果红去除效果的影响。结果表明:Co~(2+)对传统Fenton试剂降解刚果红废水具有显著的促进作用,使得反应最佳pH值向近中性条件移动。当Co~(2+)与Fe~(2+)摩尔比为1∶1,3%H_2O_2投加量为2 mL,温度为65℃,pH值为7,降解60 min时,改性Fenton试剂对刚果红去除率达到98.2%。正交实验结果说明温度是最主要影响因素。  相似文献   

5.
探讨了木质素对工业含Fe~(3+)废水的处理情况。试验主要探讨了反应时间,木质素投加量,废水pH,废水中Fe~(3+)质量浓度对Fe~(3+)吸附效果的影响。结果表明,当木质素的投加量为1 g、废水pH为6~7、搅拌时间为50min时,对100 mL Fe~(3+)质量浓度为5 mg/L的废水中Fe~(3+)的吸附效果较好,Fe~(3+)去除率达到98.19%,剩余Fe~(3+)质量浓度为0.090 7 mg/L,处理效果达到《污水综合排放标准》(GB 8978—1996)中最高允许排放质量浓度(≤0.1 mg/L)要求。  相似文献   

6.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

7.
采用Fe~(2+)活化过硫酸钾处理三唑醇农药废水,研究不同pH、过硫酸钾投加量、七水合硫酸亚铁投加量和反应时间等因素对三唑醇农药废水处理效果的影响。结果表明最佳反应条件为:初始pH=6.0,过硫酸钾投加量10 g/L,七水合硫酸亚铁投加量6 g/L,反应时间100 min,废水中COD和TOC的去除率可达53.47%和35.45%。研究结果表明Fe~(2+)活化过硫酸钾法相比芬顿法,能够在中性条件下对污染物取得良好的去除效果,大大降低药剂成本,是一种经济有效的处理方法。  相似文献   

8.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

9.
用高炉渣吸附废水中的Cu(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu(2+)的吸附过程符合吸附伪二级动力学方程和Langmuir吸附等温模型,这表明此吸附过程主要是单分子层吸附,并且吸附是容易发生的。  相似文献   

10.
采用硫酸钠-过氧化氢-氯化钠加合物(SPS)固体类芬顿试剂降解苯胺,考察了SPS的用量、Fe~(2+)的用量、初始pH、苯胺污染物浓度、温度及反应时间对苯胺降解率的影响。结果表明,最佳反应条件为温度30℃,初始pH为2,SPS投加量0.4 g,SPS与硫酸亚铁投加比例10∶1,氧化时间为30 min时,处理100 mL的50 mg/L苯胺废水,降解率可达到93.24%,SPS对芬顿体系的动力学更符合一级反应动力学。  相似文献   

11.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

12.
采用Fenton氧化-Na_2S沉淀法处理综合电镀废水,并研究了Fe~(2+)与H_2O_2的浓度比、Na_2S的投加量、废水最终pH值、反应温度及反应时间对残余金属离子质量浓度的影响。结果表明:当H_2O_2与Fe~(2+)的浓度比为1.0∶1.4、Na_2S的投加量为0.35 g/L、废水最终pH值为7.0时,在20℃下反应15 min后静置,上清液中残余Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的质量浓度均大幅降低,Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的去除率分别为92.8%、90.0%、91.3%、97.3%。可见,Fenton氧化-Na_2S沉淀法可有效去除综合电镀废水中的Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)等金属离子。  相似文献   

13.
试验探究了Fe~0+NaClO处理低浓度硝酸盐氮废水的可行性。考察了pH、温度、Fe~(2+)浓度、Fe~0投加量和初始NO_3~-浓度对Fe~0还原硝酸根的影响以及NaClO投加量对Fe~0和NO_3~-的还原产物NH_4~+去除效果的影响。试验结果表明,当NO_3~-初始质量浓度为50 mg/L、pH=2时,投加10 g/L Fe~0,50℃恒温反应2 h后,再投加300 mmol/L的NaClO,可使出水NO_3~-低于5 mg/L,NH_4~+低于2 mg/L。  相似文献   

14.
通过浸泡、高温煅烧等方法将Fe~(2+)负载于竹炭上,制成非均相催化剂。考察了Fe~(2+)负载效果,并研究其对含铜废水的处理效果。当Fe~(2+)负载平衡时间为60min、Fe~(2+)的质量浓度为1 280mg/L时,最佳的负载量为65.85mg/g。对于处理50mg/L的含铜废水,最佳的反应条件为:初始pH值2.5,反应温度30℃,反应时间60min,H_2O_2的投加量2mL/L,催化剂的投加量0.6g/L,此条件下Cu~(2+)的去除率可达到88.85%。该催化剂适用的反应pH值范围大,在碱性条件下处理效果也可达到55%以上,同时具有一定的重复性,三次利用后去除率仍可达40%以上。  相似文献   

15.
用H_2O_2/Fe~(2+)处理含蒽醌-2-磺酸(ASA)染料废水的实验研究   总被引:12,自引:0,他引:12  
研究了在各种pH值和过氧化氢与铁盐的不同比值条件下费通试剂的自分解,以及在H_2O_2/Fe~(2+)体系中,非生化降解的有机染料ASA氧化成可生化降解产物的转化程度。在pH=3,H_2O_2/Fe~(2+)=10/1的情况下,中间产物具有良好的可生化降解性。投加H_2O_2方式影响其比耗。分批式投加比一次投加能更有效地利用过氧化氢。以Fe~(3+)代替Fe~(2+)可获得同样的氧化效果。本方法更适用于处理高含盐量的有机废水。  相似文献   

16.
Fenton法处理DDNP废水的实验研究   总被引:2,自引:0,他引:2  
采用Fenton法处理DDNP废水,考察H_2O_2与FeSO_4的体积比、试剂总投加量、pH、反应时间等因素对去除效果的影响.实验结果表明,pH为6,质量分数为30%的H_2O_2投加量为40 mL/L左右、Fe~(2+)投加质量浓度为4.56 g/L,振荡1.5 h,COD_(Cr)去除率可达94.78%,色度去除率可达94.38%.  相似文献   

17.
采用湿碱法,以聚醚胺和CS_2为原料合成了二硫代氨基甲酸盐(DTC)。以天津地铁某车辆段洗车废水为研究对象,通过混凝实验,探讨DTC对洗车废水除油和除浊性能,并考察DTC和Fe~(2+)的投加量、pH、废水温度这3个因素对废水中浊度及含油量去除效果的影响,从而确定适宜的条件。结果表明,DTC和Fe~(2+)反应生成的絮凝体通过网捕和卷扫作用取得了较好的除油和除浊效果。DTC和Fe~(2+)的适宜投加量分别为200 mg/L和30 mg/L;除油和除浊效果都受到pH和水温的影响,适宜pH为6.3~8.3、混凝温度为25℃,在此条件下,DTC对废水的除油率和除浊率分别可以达到78.2%和83.4%以上。  相似文献   

18.
用高炉渣吸附废水中的Cu~(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu~(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu~(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu~(2+)的吸附过程符合吸附伪二级动力学方程和Langmuir吸附等温模型,这表明此吸附过程主要是单分子层吸附,并且吸附是容易发生的。  相似文献   

19.
Fenton试剂处理抗生素厌氧处理出水的试验研究   总被引:5,自引:2,他引:3  
采用Fenton试刺处理经厌氧处理后的抗生素废水,通过正交试验确定其主要影响因素的最佳水平组合为:FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中),进水pH为3.0,[H_2O_2]:[Fe~(2+)]为12:1,反应时间为2h.在正交试验基础上,通过单因子分析确定了系统的最佳运行条件.在FeSO_4·7H_2O投加量为3mmol(200mL厌氧出水中)、进水pH为3.0、[H_2O_2]:[Fe~(2+)]为8:1、反应时间为2h的条件下,对COD的去除率可以达到72%,处理出水BOD_5/COD为0.45.  相似文献   

20.
Fenton试剂预处理皂素废水的实验研究   总被引:1,自引:0,他引:1  
李琛 《杭州化工》2010,40(4):25-27,31
皂素生产废水具有色度大、有机物浓度高、酸度大、温度高等特点,是一种难处理的废水。以陕南某皂素生产企业皂素废水为研究对象,采用Fenton试剂氧化技术进行预处理。研究结果表明,COD=73600mg/L的原水,在Fe2+投加量为3.125g/L(绿矾15.514g/L),H2O2投加量为225g/L,pH值为4左右,反应时间为1h的条件下,COD去除率达到89.40%。此方法具有反应时间短(1h)、不受SO42-浓度影响、不产生二次污染的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号