首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《应用化工》2022,(9):2031-2036
针对油页岩热解反应过程复杂,产油率低的问题,进行了油页岩的热解机理和反应过程介绍,探讨了材料特性、炉型种类、催化剂类型、热解温度、加热速率和停留时间对热解转化率的影响及其变化规律。研究发现材料特性影响页岩油产率和品质,粒径尺寸适宜范围在1. 23 mm;固体干馏炉比气体干馏炉好,其油页岩利用率和油收率最高可达100%;催化剂由于其独特的性质和结构特点能够加速油页岩的热解,增大油页岩热解转化率,提高页岩油产率;此外,热解温度在5203 mm;固体干馏炉比气体干馏炉好,其油页岩利用率和油收率最高可达100%;催化剂由于其独特的性质和结构特点能够加速油页岩的热解,增大油页岩热解转化率,提高页岩油产率;此外,热解温度在520550℃、加热速率在12550℃、加热速率在1215℃/min和停留时间在2015℃/min和停留时间在2040 min范围内能够提高页岩油产率,改善页岩油的品质。指出了油页岩热解技术发展趋势,以期为我国非常规、战略接替能源的开发利用提供一定的参考。  相似文献   

2.
运用Aspen Plus软件建立了以页岩灰为热载体的油页岩干馏模型。利用该模型对柳树河油页岩的固体热载体干馏过程进行了模拟,并与试验数据进行了对比,发现模拟结果与试验结果基本相符。在此基础上,分析了干馏终温和停留时间对热解水、热解气体和页岩油产量的影响。计算结果表明,柳树河油页岩的干馏最佳温度在520℃左右,干馏产物收率随干馏终温的升高而升高。热解温度过低时,油页岩中的有机质分解不充分,干馏产物收率随着停留时间的延长而增加。在较高的干馏终温下,油页岩中的有机质分解迅速、充分,停留时间对干馏产物收率没有明显的影响,所以提高干馏终温比增加停留时间更有效。  相似文献   

3.
通过热重、元素和XRD分析,研究了新疆吉木萨尔县石长沟矿区油页岩在不同升温速率下的热解特性及热解机理. 结果表明,油页岩中有机质热解生成页岩油和热解煤气的反应主要集中在300~550℃;升温速率从3℃/min增至15℃/min,热解反应向高温区移动,有机质完全热解温度从530℃升至575℃. 油页岩有机质的热解动力学分析显示,升温速率从3℃/min增至15℃/min,直接Arrhenius法计算的有机质热解活化能从243.52 kJ/mol增至257.32 kJ/mol;反应转化率从0.02增至0.97,Friedman法计算的活化能从96.39 kJ/mol增至292.84 kJ/mol.  相似文献   

4.
在电炉加热流化床热解反应器上,进行了小颗粒窑街油页岩热解提油实验,研究了热解温度和固相停留时间对热解提油特性的影响,并深入分析比较不同条件制得焦油的品质。结果表明:热解反应进程、固液气三态产物分布和焦油品质主要受热解温度影响,受固相停留时间的影响相对较小。在500—600℃范围内,随着热解温度上升,热解反应从热分解阶段过渡到热缩聚阶段,液体产率和焦油品质均先上升后下降、并在550℃均达到最佳,此时液体产率为6.5%,一级热解液体产物中焦油的饱和分和芳香分质量分数分别达到30.0%和29.4%。在15—45min的固相停留时间范围内,适当延长固相停留时间有利于物料中可热解成分的析出,液体产率增大,焦油含中低温馏分及饱和分和芳香分的质量分数先增大、30 min后基本不变。  相似文献   

5.
简述了油页岩热解加入催化剂不仅可以提高页岩油产率,也能在一定程度上控制其成分。重点介绍了常用的四类催化剂:天然矿物,金属化合物,分子筛和负载类催化剂对油页岩热解的影响。研究表明,天然矿物能影响热解产物的组成,如蒙脱石可提高页岩油产率。金属氧化物、金属盐对热解均有催化作用,金属氧化物使页岩油芳烃含量增加,金属盐类促进油页岩里含有的有机质分解,加快反应速率。适当的分子筛能够使页岩油产率增加,并降低其中含硫、氮的化合物含量。在此基础上指出了制备新型催化剂的发展方向,希望能够为全世界的非常规能源的发掘使用产生参考价值,使油页岩催化热解技术进一步工业应用有据可依。  相似文献   

6.
世界油页岩资源的开发利用现状   总被引:2,自引:0,他引:2  
侯吉礼  马跃  李术元  藤锦生 《化工进展》2015,34(5):1183-1190
油页岩是一种非常规能源,世界储量巨大,作为石油的补充能源,开发前景广阔.油页岩在隔绝空气条件下加热至500℃左右,会热解生成页岩油,经加工处理后可以制得汽油、柴油等油品.油页岩也可直接燃烧,产生蒸气、发电,目前利用油页岩燃烧发电的国家有爱沙尼亚、中国、德国等.本文介绍了世界主要油页岩国家的油页岩储量和加工利用情况,目前世界上利用油页岩干馏制取页岩油的国家主要有3个,中国(产量80万吨)、爱沙尼亚(产量50万吨)和巴西(18万吨),其他国家略有生产.中国页岩油产量一直居世界首位,目前有将近10座油页岩干馏厂投入运行,其中抚顺矿业集团年产页岩油35万吨,全国居首,该公司引进的日处理颗粒油页岩量6000t的ATP干馏工艺,目前已经在调试中阶段性运转,并逐渐延长连续运转时间,山东龙口等其他地方的油页岩加工利用也取得很大进展.美国目前没有进行油页岩干馏炼制页岩油的工业化生产,但有多所大学、公司和研究所已经对油页岩进行了长期的地上和地下干馏工艺的研究和开发.文中还介绍了国内外油页岩干馏的3种主要炉型,分别为块状页岩气体热载体干馏炉、颗粒页岩固体热载体干馏炉和粉末页岩流化干馏炉,并对比了不同国家的干馏炉型的优缺点.  相似文献   

7.
运用Aspen Plus软件,将油页岩定义为常规物流、非常规物流和常规惰性固体物流的混合物流,结合油母质热解机理、总包一级热解动力学模型,建立了油页岩气体热载体干馏炉模型。在干馏炉正常运行温度下,对油页岩中有机质及其热解产物页岩油、热解气体、半焦等物质的质量进行了计算和分析,并对不同温度下有机质及其热解产物的质量进行了计算和分析。模拟结果与干馏炉设计运行参数符合较好,能方便的对不同温度下热解产物的质量进行预测。  相似文献   

8.
对甘肃油页岩进行了微波热解实验研究,考察了油页岩在微波场中的升温特性及功率对页岩油、半焦、干馏气产率和组成的影响。结果表明:在微波场中油页岩干馏终温可达800℃以上;不同功率下干馏气组成不同,在480 W时干馏气中有效组分(H2+CH4+CO)达55%以上;随着功率的增大,半焦产率逐渐减小;页岩油产率随功率先增加后减小,在480 W时达到最大值13.5%;而干馏气产率随功率逐渐增大,在480 W时可达10%。  相似文献   

9.
油页岩干馏生产页岩油是油页岩的主要加工利用方式。为降低油页岩干馏所需热载气温度,以延长载气预热器使用寿命并实现节能操作,本文向热载气中掺入一定比例氧气,对含氧低温载气情况下的油页岩干馏过程进行了研究。测定了油页岩在含氧气体氛围中热解时的反应器床层升温特性,对气液相产物组成进行了分析并与无氧干馏产物进行了比较。结果表明,含氧低温载气干馏过程能够通过载气中的氧气与油页岩反应产生的热量使油页岩达到其干馏所需要的温度,页岩油收率及其成分与无氧高温载气干馏过程接近、而轻组分含量更高,并且含有更多的具有O—H键和C==O键官能团的化合物。本文研究结果为油页岩干馏生产页岩油提供了一种新的技术方法,具有较好的工业应用前景。  相似文献   

10.
油页岩半焦热解特性   总被引:4,自引:3,他引:1  
利用热重分析仪对油页岩半焦热解特性进行了研究.综合考虑制取半焦所获得的页岩油品质、半焦成分、发热量和循环流化床设计,认为干馏温度介于500~600℃为宜;干馏度对半焦热解初析温度和低温段热解过程有影响,但对高温段热解影响不明显,高温干馏所制取的半焦其热解过程包含于低温所制取的半焦热解过程中;随升温速率的提高,相同温度下的半焦热解度降低,当升温速率超过40℃•min-1后,升温速率对半焦热解过程影响不大;最后采用Coasts法计算了油页岩半焦热解动力学参数,计算结果可供数值仿真和工程设计参考.  相似文献   

11.
介绍了油页岩资源的基本情况及抚顺式干馏工艺的特点,对影响抚顺式干馏炉页岩油产率的因素进行了分析,并针对影响因素进行了改变干馏机理、确定最佳工况参数的半工业化试验。试验证明,对抚顺式干馏炉可通过改变工艺配量的方式,使其达到最佳工作状态,从而保证干馏炉得到较高的页岩油产率。  相似文献   

12.
分别介绍了油页岩低温干馏试验、油页岩与页岩灰掺混的干馏试验,结果表明,其他条件相同时,页岩灰与油页岩以4:1比例掺混时,油页岩干馏所产页岩油(凝点10℃,密度0.898 2g/cm3)与油页岩不掺混页岩灰干馏所得页岩油(凝点26℃,密度0.909 6g/cm3)相比,页岩油品质有所提升,有助于后续加工。  相似文献   

13.
简述了热解油页岩相关现状和油页岩热解主要因素影响,并且对油页岩典型参数以及热解技术进行分析,着重讲述了材料性质、热解温度、加热时间、升温速率对油页岩热解产生的相关影响,探讨了油页岩在不同热解环境下其热解产率产生的变化,以及哪种状态下油页岩热解的产率可以达到最高。最后指出油页岩热解发展必然趋势,希望能够为非常规能源的发掘使用提供参考。  相似文献   

14.
桦甸油页岩的微波干馏特性   总被引:5,自引:0,他引:5  
在自行设计的微波干馏装置上研究了桦甸油页岩、半焦及其混合物在微波场中的升温特性。发现油页岩本身是一种微波弱吸收物质,纯油页岩在微波场中升温能力较差;油页岩热解产物半焦在微波场中升温很快,可以作为油页岩微波干馏的微波吸收剂,将油页岩和半焦的混合物放入微波场中能达到良好的热解效果。实验研究了半焦和油页岩的混合比、微波功率、粒径等因素对微波干馏效果的影响,结果发现,随着半焦比例加大,产油率增加,半焦产率降低;在相同时间内,微波功率越大,产油率和气体损失产率越大,半焦产率降低;油页岩粒径对微波热解影响较小,但当粒径小于0.2mm时实验中出现了较严重的夹带现象。  相似文献   

15.
为掌握废轮胎的低温无催化热解特性,本文作者对轮胎胶粒及其热解产物进行了研究,铝甑干馏实验研究表明500℃的干馏热解过程,能够实现轮胎胶粒充分热解,热解产生的油和半焦炭黑占原料比为90.7%;通过500℃干馏热解实验及固体半焦的铝甑干馏和工业分析表明,500℃温度条件能较好地实现轮胎胶粒充分干馏热解;但干馏加热时间较长,建议考虑强化热解炉换热工艺的措施。从热解油分析结果可知,其中含微量的灰分、沥青质等成分,在工业设计时应考虑避免油气回收时堵管等现象发生。  相似文献   

16.
黄雷  张玉明  张亮  张晓晨  孙国刚 《化工学报》2017,68(10):3770-3778
采用两段反应器对油页岩热解初级挥发分进行二次催化反应特性研究,考察了第2段反应器内不同的催化载体、反应气氛与停留时间对油气收率及品质的影响。结果表明,在考察的停留时间范围内页岩灰具有相对适中的催化活性来调控热解挥发分产物的二次反应,水蒸气气氛能够进一步提高热解油收率约5%,并能够在一定程度上抑制裂解气体中C2~C3组分的生成。页岩灰作为催化载体能够转化热解油中VGO(馏程>350℃)等重质组分,随停留时间增加油品馏程向轻组分转移。油品组分GC-MS结果表明,较短停留时间内(<3 s),水蒸气添加能够有效抑制热解油中脂肪烃类的过度裂解,与氮气相比提高汽柴油馏分含量20%以上。过长的停留时间(3~5 s)会造成VGO等馏分缩聚生成焦炭,从而大幅降低热解油收率。  相似文献   

17.
采用两段反应器对油页岩热解初级挥发分进行二次催化反应特性研究,考察了第2段反应器内不同的催化载体、反应气氛与停留时间对油气收率及品质的影响。结果表明,在考察的停留时间范围内页岩灰具有相对适中的催化活性来调控热解挥发分产物的二次反应,水蒸气气氛能够进一步提高热解油收率约5%,并能够在一定程度上抑制裂解气体中C_2~C_3组分的生成。页岩灰作为催化载体能够转化热解油中VGO(馏程350℃)等重质组分,随停留时间增加油品馏程向轻组分转移。油品组分GC-MS结果表明,较短停留时间内(3 s),水蒸气添加能够有效抑制热解油中脂肪烃类的过度裂解,与氮气相比提高汽柴油馏分含量20%以上。过长的停留时间(3~5 s)会造成VGO等馏分缩聚生成焦炭,从而大幅降低热解油收率。  相似文献   

18.
油页岩经低温干馏可以得到页岩油,因生产工艺限制,干馏炉无法使用粒径12 mm以下的油页岩,同时会产生大量副产品(页岩半焦)。为提高副产品的利用能力,实现资源利用最大化。通过在1 MW_(th)CFB燃烧试验台对小颗粒页岩及页岩半焦进行试烧试验,研究小颗粒页岩及页岩半焦的理化特性、着火特性、燃尽特性、结焦特性。试验结果表明,控制床温在720~850℃内,由油页岩小颗粒和半焦掺混而成的设计燃料在试验台采用CFB方式能够稳定燃烧,试验各工况灰渣含碳量均低于1.81%,试验燃料较易燃尽。CFB锅炉适合油页岩小颗粒与半焦掺烧利用,且燃烧效率高,燃烧稳定性较好。  相似文献   

19.
《化学工程》2016,(5):17-21
为研究炉内油页岩的干馏特性及炉内的温度分布,自行搭建处理量为5 kg/h的循环瓦斯热载体干馏试验装置,试验结果表明炉内布气方式对页岩的干馏特性具有很大影响。在边壁进气与中心管进气体积比为8∶4时油收率达到最大值,且炉内温度分布最均匀,单位时间内的放热量最大;不同的布气方式导致干馏层内气体冲刷页岩颗粒程度的不同,使得炉内油页岩的传热特性存在差异,炉内温度分布与放热量不同,最终油收率也不同。边壁进气在炉体内部的传热效果优于中心进气。温度分布越均匀,油收率越高;该布气方式依然存在局限,需要进一步研究。  相似文献   

20.
文章利用自行设计搭建的处理量120 kg/d的瓦斯全循环气体热载体干馏炉,通过试验的方法,研究新型气体热载体干馏炉在干馏过程中的一些运行参数和产生的页岩油的一些特性,对现有干馏工艺的改进具有指导意义。试验通过改变油页岩颗粒的粒径,进而改变物料之间的空隙率、空隙结构和进气流量,来研究不同粒径的样品对干馏特性和干馏产物的影响。结果表明:油页岩颗粒的粒径不同,物料之间的空隙率和干馏炉的进气流量不同,导致炉内传热传质的不同,不同粒径的油页岩干馏油收率不同,粒径为20—25 mm的页岩油收率最高。由于气体热载体流量不同,干馏炉内传热传质情况和冷却器的工作负荷也不相同,因此不同粒径的页岩干馏之后,在4个收油点所收到的页岩油质量分数也不相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号