首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the correlation of intensity fluctuations in random electromagnetic beams, the so-called Hanbury Brown–Twiss effect (HBT). We show that not just the state of coherence of the source, but also its state of polarization has a strong influence on the far-zone correlations. Different types of sources are found to have different upper bounds for the normalized HBT coefficient.  相似文献   

2.
Structure of Bi100-x_{\boldsymbol{100-x}}Gax_{\boldsymbol{x}} molten alloys containing 38·5, 50, 70 and 91·5 at. % Ga has been studied by means of X-ray diffraction method and compared with viscosity measurements data. Significant changes in the structure factor profile were observed in vicinity of the concentration 70 at. % Ga. The dynamic viscosity coefficient was calculated by use of a statistical atomic distribution model and a Born–Green kinetic theory. The concentration dependence of viscosity is in agreement with change of structure parameters obtained from diffraction data.  相似文献   

3.
Experimental data for antiferromagnetic nanoparticles are often analyzed as if the particles were ferromagnetic. However, due to the volume dependence of the magnetization resulting from uncompensated spins, such analysis will yield erroneous results. This is demonstrated as we analyze ac and dc magnetization data as well as M?ssbauer spectra obtained for ferritin. The values of the median energy barrier obtained from the different data are in very close agreement when a distribution of volumes and a volume dependence of the magnetization are taken into account. However, when the volume dependence of the magnetization is neglected, erroneous values of the anisotropy energy barrier and the attempt time τ(0) are obtained.  相似文献   

4.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

5.
Over many years the use of composite structures in aerospace and automobile applications has been expanding. Thus, the study of weaknesses associated with composite materials has become paramount. Delamination is a fundamental concern with these structures, and mixed mode strain energy release rates are valuable information for analysing delamination cracks. The localised experimental–numerical technique (LENT), which measures local test displacement data and combines this with local finite element analysis to evaluate the mixed mode strain energy release rates, is examined via extensive experimental testing and analysis to provide validation for the technique. Additionally, a sensitivity analysis is presented to assess the influence of pixel size on the strain energy release rate results determined using LENT. Enhancements to the method are presented focusing on reducing the pixel size and improving post-processing techniques for increased accuracy. Variations in the local area analysed with LENT are also investigated. The results demonstrate that the localised experimental–numerical technique has potential for the evaluation of mixed mode strain energy release rates using localised test data.  相似文献   

6.
The study of particle packing models for binary mixtures is important in the field of granular materials, from both theoretical and practical perspectives. A number of particle packing models have been developed for predicting packing density (or void ratio) of a binary mixture. However, the measured results and the predicted values do not always agree with each other, particularly in the range of fines content between 25 and 50%. It is postulated herein that the discrepancies between the measured results and the predicted values are primarily due to the incorrect assumptions used in the existing models. In the existing models, the packing density is determined from one of the following two assumed mechanisms of particle mixing: (1) the mixed packing has a dominant large-particle skeleton and the small particles fill the voids of the large-particle skeleton, or (2) the mixed packing has a dominant small-particle skeleton and the large particles are embedded in the small-particle skeleton. It is obvious that the first assumed mechanism is only applicable for mixtures with low fines content, whereas the second assumed mechanism is only applicable to mixtures with high fines content. Therefore, the predictions from existing models are unsuitable for mixtures with medium fines content, such as a mixture of fines content between 25 and 50%. In this study, a 3-D discrete element simulation is carried out to show that, for a mixture of medium fines content, the packing structure has a dual-skeleton, which is neither dominated by a large nor small-particle skeleton. Then, we postulate that, in the mixed packing, both mechanisms can take place: filling of small particles and embedment of large particles. The concepts of “dual-skeleton index” and “index size” are proposed to account for the interactive effects of filling and embedment. Based on this postulation, we develop an analytical method, which has the capability of predicting minimum void ratio for sand–silt mixtures with various fines contents. The developed model is then validated by the experimental results obtained from 16 types of sand–silt mixtures.  相似文献   

7.
Proton (wet atmosphere) and electron (reduced graphene oxide) conductivities can be observed in graphene oxide films. The field effect in a graphene oxide transistor for different conductivity types has been discovered and investigated.  相似文献   

8.
In this work, the electrical resistivity and thermal conductivity of both as-solution binary Mg–Al and Mg–Zn alloys were investigated from 298 K to 448 K, and the correlation between the corresponding electrical conductivity and thermal conductivity of the alloys was analyzed. The electrical resistivity of the Mg–Al and Mg–Zn alloys increased linearly with composition at 298 K, 348 K, 398 K, and 448 K, while the thermal conductivity of the alloys exponentially decreased with composition. Moreover, the electrical resistivity and thermal conductivity for both Mg–Al and Mg–Zn alloys varied linearly with temperature. On the basis of the Smith–Palmer equation, the thermal conductivity of both binary Mg alloys was found to be correlated quite well with the electrical conductivity in the temperature range from 298 K to 448 K. The corresponding Lorenz number is equal to $2.162\times 10^{-8} \,\hbox {V}^{2}\cdot \hbox {K}^{-2}$ 2.162 × 10 - 8 V 2 · K - 2 , and the lattice thermal conductivity is equal to $5.111 \,\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}$ 5.111 W · m - 1 · K - 1 . The possible mechanisms are also discussed.  相似文献   

9.
10.
Advisor–advisee relationship is important in academic networks due to its universality and necessity. Despite the increasing desire to analyze the career of newcomers, however, the outcomes of different collaboration patterns between advisors and advisees remain unknown. The purpose of this paper is to find out the correlation between advisors’ academic characteristics and advisees’ academic performance in Computer Science. Employing both quantitative and qualitative analysis, we find that with the increase of advisors’ academic age, advisees’ performance experiences an initial growth, follows a sustaining stage, and finally ends up with a declining trend. We also discover the phenomenon that accomplished advisors can bring up skilled advisees. We explore the conclusion from two aspects: (1) Advisees mentored by advisors with high academic level have better academic performance than the rest; (2) Advisors with high academic level can raise their advisees’ h-index ranking. This work provides new insights on promoting our understanding of the relationship between advisors’ academic characteristics and advisees’ performance, as well as on advisor choosing.  相似文献   

11.
Previously published complex impedance plots for the ionic conductor -PbF2 show the familiar depressed circular arcs with an angle 0.7 /2 and an activation energy for the volume conductivity W v=0.45 eV. A detailed analysis of this behaviour in terms of the recently developed non-Debye model shows the real part of the relative dielectric permittivity to have a frequency dependence 0.7–1, with a high frequency limit of 50 Hz and with only weak dependence on temperature. The low-frequency spurs on the impedance plots are shown to indicate an interfacial barrier at each electrode having a similar non-Debye frequency characteristic to the bulk but showing a strong temperature dependence with an activation energy equal to W v/2. This suggests the presence of low Debye-screened barriers of about k T height, resulting from depletion and accumulation of ionic carriers at incompletely transmitting electrodes. There is no visible effect of inter-grain boundaries on the flow of direct current.  相似文献   

12.
This work presents a novel and simple route for the synthesis of water-soluble core–shell chitosan–gold nanocomposites. The experimental procedure can be summarized by the following steps: (i) chitosan deacetylation, (ii) chitosan depolymerization, (iii) chitosan nanoparticles’ formation and (iv) chitosan–gold nanocomposite formation. FT-IR spectroscopic results indicate that the formation of chitosan nanoparticles (ChtNPs) occurs via NH3+ and PO groups electrostatic interactions, while UV–vis spectra points to a possible embedding of gold nanoparticles into the ChtNPs. This feature was confirmed by electronic transmission microscopy measurements. Chitosan and gold are biocompatible materials. Added to this, the obtained chitosan–gold nanocomposites presented thermal and absorbance properties which strongly point to their potential use in phototherapeutic processes.  相似文献   

13.
The sintering behavior and effect of ternary additions on the microstructure and mechanical properties of Ni–Fe-based alloy were investigated, with the ternary additions Al, Co, Cr, Mo, Ta, and Ti. The effect of the different ternary additions was more obvious when comparing Ni40Fe10X (X?=?Al, Ti) and the rest of the alloys, with the former having better density and hardness than the latter. Sintered densities close to theoretical (≥98%), excluding Ni40Fe10Mo, were achieved. Interestingly, the visible porosity regions in all the samples were very small in agreement of the high sintered densities observed. The shrinkage rate was similar for all the alloys, and three peaks were observed, the first two peaks merged, and overall all the peaks were indicative of the phenomena responsible for good densification. The hardness measurement revealed that samples with poor homogeneity and those with clusters of ternary element addition in the microstructure had no hardness improvement compared to the base binary alloy. For alloys with Al, Cr, and Ti, fracture surface SEM morphology revealed the intergranular fracture of the grains and the ductile tearing of the binding phase, typical dimple structure of a ductile material; therefore, the mechanical properties of these samples are improved, while the rest of the alloys were characterized with peeling of very fine spherical particles and varying grain size and consequently compromising its mechanical properties.  相似文献   

14.
15.
We report the changes in the structural and optical property of TiO2 nanoparticles on codoping Ce–Nd ions. X-ray diffraction clearly demonstrates the structural changes occurring in the codoped TiO2 nanoparticle. Oxygen defects disturb the TiO bonds in the TiO6 octahedra and result in the shifting and broadening of the Raman Eg peak. Pure TiO2 nanoparticles show absorption peak in the UV region. However, codoped TiO2 nanoparticles exhibit absorption peaks in the visible region corresponding to the f–d and f–f electronic transition of Ce3+ and Nd3+ in the crystalline environment of TiO2. The visible emission peaks of pure and codoped TiO2 nanoparticles are mainly associated with oxygen vacancies. Incorporation of cerium intensifies the visible emission peaks of TiO2 nanoparticles. On the other hand, codoping of Nd forms some non radiative recombination centres and increases the possibility of emission energy transfer among dopants, defects, thereby quenching the intensity of the visible emission peaks.  相似文献   

16.
The paper investigated the effect of two aging processes (i.e. normal aging and interrupted aging) on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy. The results of tensile and Kahn tear tests showed that the interrupted aging (IA) process could significantly improve the uniform elongation and plane stress fracture toughness with tiny decrease in ultimate tensile strength, when compared with the results from normal aging (NA) process. Under the scanning electron microscope, the fracture surface of samples treated by NA followed the intergranular fracture, while that of the samples treated by IA followed the transgranular fracture. The transmission electron microscope study revealed the differences between the microstructure of the alloy treated by NA and IA processes. After the NA process, the slender strip of γ′ precipitates aggregated at grain boundaries with a length of approximately 10 to 45 nm; the disk-shaped γ″ precipitates in the alloy treated by IA distributed homogenously throughout whole grains with a length of about 3 to 10 nm. The discussion of strengthening mechanisms demonstrated that the mechanism of precipitate shearing by dislocations made a contribution to the strengthening of the alloy treated by IA, while the Orowan mechanism was the dominant strengthening mechanism in the alloy treated by NA.  相似文献   

17.
Two hybrid cells for realizing the Co–C and Pd–C fixed points and constructed at Istituto Nazionale di Ricerca Metrologica (INRIM) were used for an evaluation of facilities and procedures adopted by INRIM and National Metrology Institute of Singapore (NMC) for the realization of the solid–liquid phase transitions of high-temperature fixed points and for determining their transition temperatures. Four different furnaces were used for the investigations, i.e., two single-zone furnaces, one of them of the direct-heating type, and two identical three-zone furnaces. The transition temperatures \(T_{90}\) were measured at both institutes by adopting different procedures for realizing the radiation scales, i.e., at INRIM a scheme based on the extrapolation of fixed-point interpolated scales and an International Temperature Scale of 1990 (ITS-90) approach at NMC. The point of inflection (POI) of the melting curves was determined and assumed as a practical representation of the melting temperature. Different methods for deriving the POI were used, and differences as large as some hundredths of a kelvin were found with the different approaches. The POIs of the different melting curves were analyzed with respect to the different possible operative conditions with the aim of deriving reproducibility figures to improve the estimated uncertainty. As regard to the institutes inter-comparison, differences of 0.13 K and 0.29 K were found between INRIM and NMC determinations at the Co–C and Pd–C points, respectively. Such differences are compatible with the combined standard uncertainties of the comparison, which are estimated to be 0.33 K and 0.36 K at the Co–C and Pd–C points, respectively.  相似文献   

18.
19.
20.
Time-evolution of the dispersive Jaynes–Cummings model interacting with a bosonic reservoir is considered in the presence of an initial correlation between the cavity field and reservoir. When there is at most one excitation in the whole system, the exact time-evolution can be obtained. The effects of the initial correlation on the decoherence of the two-level system and cavity field are investigated. Furthermore, the validity of the time-convolutionless quantum master equation in the second-order approximation with respect to the system-reservoir interaction is examined by means of the exact solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号