首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4EGI‐1, the prototypic inhibitor of eIF4E/eIF4G interaction, was identified in a high‐throughput screening of small‐molecule libraries with the aid of a fluorescence polarization assay that measures inhibition of binding of an eIF4G‐derived peptide to recombinant eIF4E. As such, the molecular probe 4EGI‐1 has potential for the study of molecular mechanisms involved in human disorders characterized by loss of physiological restraints on translation initiation. A hit‐to‐lead optimization campaign was carried out to overcome the configurational instability in 4EGI‐1, which stems from the E‐to‐Z isomerization of the hydrazone function. We identified compound 1 a , in which the labile hydrazone was incorporated into a rigid indazole scaffold, as a promising rigidified 4EGI‐1 mimetic lead. In a structure–activity relationship study directed towards probing the structural latitude of this new chemotype as an inhibitor of eIF4E/eIF4G interaction and translation initiation we identified 1 d , an indazole‐based 4EGI‐1 mimetic, as a new and improved lead inhibitor of eIF4E/eIF4G interaction and a promising molecular probe candidate for elucidation of the role of cap‐dependent translation initiation in a host of pathophysiological states.  相似文献   

2.
We previously found that p97 ATPase inhibitors 2‐(2‐amino‐1H‐benzo[d]imidazol‐1‐yl)‐N‐benzyl‐8‐methoxyquinazolin‐4‐amine ( ML240 ) and 2‐(2H‐benzo[b][1,4]oxazin‐4(3H)‐yl)‐N‐benzyl‐5,6,7,8‐tetrahydroquinazolin‐4‐amine ( ML241 ) specifically target the D2 domain of wild‐type p97. In addition, one of the major p97 cofactors, p47, decreases their potencies by ~50‐fold. In contrast, N2,N4‐dibenzylquinazoline‐2,4‐diamine ( DBeQ ) targets both the D1 and D2 domains and shows only a four‐ to sixfold decrease in potency against the p97–p47 complex. To elucidate structure–activity relationships for the inhibitors, we screened 200 p97 inhibitor analogues for their ability to inhibit the ATPase activity of either or both of the D1 or D2 domains, as well for their effects on p47 potency. The selectivity of 29 of these compounds was further examined by eight‐dose titrations. Four compounds showed modest selectivity for inhibiting the ATPase activity of D1. Eleven compounds inhibited D2 with greater potencies, and four showed similar potencies against D1 and D2. p47 decreased the potencies of the majority of the compounds and increased the potencies of five compounds. These results highlight the possibility of developing domain‐selective and complex‐specific p97 inhibitors in order to further elucidate the physiological roles of p97 and its cofactors.  相似文献   

3.
3‐Deazaneplanocin A (DzNep) is a potential epigenetic drug for the treatment of various cancers. DzNep has been reported to deplete histone methylations, including oncogenic EZH2 complex, giving rise to epigenetic modifications that reactivate many silenced tumor suppressors in cancer cells. Despite its promise as an anticancer drug, little is known about the structure–activity relationships of DzNep in the context of epigenetic modifications and apoptosis induction. In this study, a number of analogues of DzNep were examined for DzNep‐like ability to induce synergistic apoptosis in cancer cells in combination with trichostatin A, a known histone deacetylase (HDAC) inhibitor. The structure–activity relationship data thus obtained provide valuable information on the structural requirements for biological activity. The studies identified three compounds that show similar activities to DzNep. Two of these compounds show good pharmacokinetics and safety profiles. Attempts to correlate the observed synergistic apoptotic activities with measured S‐adenosylhomocysteine hydrolase (SAHH) inhibitory activities suggest that the apoptotic activity of DzNep might not be directly due to its inhibition of SAHH.  相似文献   

4.
Analogues of 1‐O‐hexadecyl‐sn‐3‐glycerophosphonocholine (compounds 1 – 4 ) or sn‐3‐glycerophosphocholine (compound 5 ) bearing a carbamate or dicarbamate moiety at the sn‐2 position were synthesized and evaluated for their antiproliferative activity against cancer cells derived from a variety of tissues. Although all of the compounds are antiproliferative, surprisingly the carbamates ( 1 and 2 ) are more effective against the hormone‐independent cell lines DU145 and PC3 than toward other cancer cell lines we examined. This selectivity was not observed with the dicarbamates ( 3 and 4 ). Phosphocholine carbamate analogue 5 is as effective against the prostate cancer cell lines as the corresponding phosphonocholine analogue 1 . Cell death induced by 2′‐(trimethylammonio)ethyl 4‐hexadecyloxy‐3(R)‐N‐methylcarbamoyl‐1‐butanephosphonate (carbamate analogue 2 ) appeared to be mediated by apoptosis, as assessed by caspase activation and loss of mitochondrial membrane potential. The in vivo activity of 2 was evaluated in a murine prostate cancer xenograft model. Oral and intravenous administration showed that 2 is effective in inhibiting the growth of PC3 tumors in Rag2M mice. Our studies show that the glycerolipid carbamates reported herein represent a class of prostate‐cancer‐selective cytotoxic agents.  相似文献   

5.
A SAR translation strategy adopted for the discovery of tetrahydroisoquinolinone (THIQ)‐based steroidomimetic microtubule disruptors has been extended to dihydroisoquinolinone (DHIQ)‐based compounds. A steroid A,B‐ring‐mimicking DHIQ core was connected to methoxyaryl D‐ring mimics through methylene, carbonyl, and sulfonyl linkers, and the resulting compounds were evaluated against two cancer cell lines. The carbonyl‐linked DHIQs in particular exhibit significant in vitro antiproliferative activities (e.g., 6‐hydroxy‐7‐methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐3,4‐dihydroisoquinolin‐1(2H)‐one ( 16 g ): GI50 51 nM in DU‐145 cells). The broad anticancer activity of DHIQ 16 g was confirmed in the NCI 60‐cell line assay giving a mean activity of 33 nM . Furthermore, 6‐hydroxy‐2‐(3,5‐dimethoxybenzoyl)‐7‐methoxy‐3,4‐dihydroisoquinolin‐1(2H)‐one ( 16 f ) and 16 g and their sulfamate derivatives 17 f and 17 g (2‐(3,5‐dimethoxybenzoyl)‐7‐methoxy‐6‐sulfamoyloxy‐3,4‐dihydroisoquinolin‐1(2H)‐one and 7‐methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐6‐sulfamoyloxy‐3,4‐dihydroisoquinolin‐1(2H)‐one, respectively) show excellent activity against the polymerization of tubulin, close to that of the clinical combretastatin A‐4, and bind competitively at the colchicine binding site of tubulin. Compounds 16 f and 17 f were also shown to demonstrate in vitro anti‐angiogenic activity. Additionally, X‐ray and computational analyses of 17 f reveal that electrostatic repulsion between the two adjacent carbonyl groups, through conformational biasing, dictates the adoption of a “steroid‐like” conformation that may partially explain the excellent in vitro activities.  相似文献   

6.
Thymidylate synthase (TS) is a key enzyme in the biosynthesis of thymidine. The use of TS inhibitors in cancer chemotherapy suffers from resistance development in tumors through upregulation of TS expression. Autoregulatory translation control has been implicated with TS overexpression. TS binding at its own mRNA, which leads to sequestration of the start codon, is abolished when the enzyme forms an inhibitor complex, thereby relieving translation suppression. We have used the protein‐binding site from the TS mRNA in the context of a bicistronic expression system to validate targeting the regulatory motif with stabilizing ligands that prevent ribosomal initiation. Stabilization of the RNA by mutations, which were studied as surrogates of ligand binding, suppresses translation of the TS protein. Compounds that stabilize the TS‐binding RNA motif and thereby inhibit ribosomal initiation might be used in combination with existing TS enzyme‐targeting drugs to overcome resistance development during chemotherapy.  相似文献   

7.
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) by lysophospholipase D activity, which leads to generation of the growth‐factor‐like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy‐resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Herein we report the synthesis and pharmacological characterization of ATX inhibitors based on the 4‐tetradecanoylaminobenzylphosphonic acid scaffold, which was previously found to lack sufficient stability in cellular systems. The new 4‐substituted benzylphosphonic acid and 6‐substituted naphthalen‐2‐ylmethylphosphonic acid analogues block ATX activity with Ki values in the low micromolar to nanomolar range against FS3, LPC, and nucleotide substrates through a mixed‐mode inhibition mechanism. None of the compounds tested inhibit the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor (LPAR) subtypes. Analogues 22 and 30 b , the two most potent ATX inhibitors, inhibit the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro in a dose‐dependent manner. The average terminal half‐life for compound 22 is 10±5.4 h and it causes a long‐lasting decrease in plasma LPA levels. Compounds 22 and 30 b significantly decrease lung metastasis of B16‐F10 syngeneic mouse melanoma in a post‐inoculation treatment paradigm. The 4‐substituted benzylphosphonic acids and 6‐substituted naphthalen‐2‐ylmethylphosphonic acids described herein represent new lead compounds that effectively inhibit the ATX–LPA–LPAR axis both in vitro and in vivo.  相似文献   

8.
(1) Background: Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is an intractable problem for many clinical oncologists. The mechanisms of resistance to EGFR-TKIs are complex. Long non-coding RNAs (lncRNAs) may play an important role in cancer development and metastasis. However, the biological process between lncRNAs and drug resistance to EGFR-mutated lung cancer remains largely unknown. (2) Methods: Osimertinib- and afatinib-resistant EGFR-mutated lung cancer cells were established using a stepwise method. A microarray analysis of non-coding and coding RNAs was performed using parental and resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells and evaluated by bioinformatics analysis through medical-industrial collaboration. (3) Results: Colorectal neoplasia differentially expressed (CRNDE) and DiGeorge syndrome critical region gene 5 (DGCR5) lncRNAs were highly expressed in EGFR-TKI-resistant cells by microarray analysis. RNA-protein binding analysis revealed eukaryotic translation initiation factor 4A3 (eIF4A3) bound in an overlapping manner to CRNDE and DGCR5. The CRNDE downregulates the expression of eIF4A3, mucin 1 (MUC1), and phospho-EGFR. Inhibition of CRNDE activated the eIF4A3/MUC1/EGFR signaling pathway and apoptotic activity, and restored sensitivity to EGFR-TKIs. (4) Conclusions: The results showed that CRNDE is associated with the development of resistance to EGFR-TKIs. CRNDE may be a novel therapeutic target to conquer EGFR-mutant NSCLC.  相似文献   

9.
(3S,4R)‐23,28‐Dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4‐dihydroxyphenyl)acrylate ( 1 a ), which possesses significant neuritogenic activity, was isolated from the traditional Chinese medicine (TCM) plant, Desmodium sambuense. To confirm the structure and to assess biological activity, we semi‐synthesized 1 a from commercially available oleanolic acid. A series of novel 1 a derivatives was then designed and synthesized for a structure–activity relationship (SAR) study. All synthetic derivatives were characterized by analysis of spectral data, and their neuritogenic activities were evaluated in assays with PC12 cells. The SAR results indicate that the number and position of the hydroxy groups on the phenyl ring and the triterpene moiety, as well as the length of the (saturated or unsaturated) alkyl chain that links the phenyl ring with the triterpene critically influence neuritogenic activity. Among all the tested compounds, 1 e [(3S,4R)‐23,28‐dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4,5‐trihydroxyphenyl)acrylate] was found to be the most potent, inducing significant neurite outgrowth at 1 μm .  相似文献   

10.
Herein we describe the synthesis and structure–activity relationships of 3‐aminocyclohex‐2‐en‐1‐one derivatives as novel chemokine receptor 2 (CXCR2) antagonists. Thirteen out of 44 derivatives were found to inhibit CXCR2 downstream signaling in a Tango assay specific for CXCR2, with IC50 values less than 10 μm . In silico ADMET prediction suggests that all active compounds possess drug‐like properties. None of these compounds show significant cytotoxicity, suggesting their potential application in inflammatory mediated diseases. A structure–activity relationship (SAR) map has been generated to gain better understanding of their binding mechanism to guide further optimization of these new CXCR2 antagonists.  相似文献   

11.
Pharmacological treatment of Chagas disease is based on benznidazole, which displays poor efficacy when administered during the chronic phase of infection. Therefore, the development of new therapeutic options is needed. This study reports on the structural design and synthesis of a new class of anti‐Trypanosoma cruzi thiazolidinones ( 4 a – p ). (2‐[2‐Phenoxy‐1‐(4‐bromophenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 h ) and (2‐[2‐phenoxy‐1‐(4‐phenylphenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 l ) were the most potent compounds, resulting in reduced epimastigote proliferation and were toxic for trypomastigotes at concentrations below 10 μM , while they did not display host cell toxicity up to 200 μM . Thiazolidinone 4 h was able to reduce the in vitro parasite burden and the blood parasitemia in mice with similar potency to benznidazole. More importantly, T. cruzi infection reduction was achieved without exhibiting mouse toxicity. Regarding the molecular mechanism of action, these thiazolidinones did not inhibit cruzain activity, which is the major trypanosomal protease. However, investigating the cellular mechanism of action, thiazolidinones altered Golgi complex and endoplasmic reticulum (ER) morphology, produced atypical cytosolic vacuoles, as well as induced necrotic parasite death. This structural design employed for the new anti‐T. cruzi thiazolidinones ( 4 a – p ) led to the identification of compounds with enhanced potency and selectivity compared to first‐generation thiazolidinones. These compounds did not inhibit cruzain activity, but exhibited strong antiparasitic activity by acting as parasiticidal agents and inducing a necrotic parasite cell death.  相似文献   

12.
In the present study, we made further investigations on the structure–activity requirements of the selective excitatory amino acid transporter 1 (EAAT1) inhibitor, 2‐amino‐4‐(4‐methoxyphenyl)‐7‐(naphthalen‐1‐yl)‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene‐3‐carbonitrile (UCPH‐101), by exploring 15 different substituents (R1) at the 7‐position in combination with eight different substituents (R2) at the 4‐position. Among the 63 new analogues synthesized, we identified a number of compounds that unexpectedly displayed inhibitory activities at EAAT1 in light of understanding the structure–activity relationship (SAR) of this inhibitor class extracted from previous studies. Moreover, the nature of the R1 and R2 substituents were observed to contribute to the functional properties of the various analogues in additive and non‐additive ways. Finally, separation of the four stereoisomers of analogue 14 g (2‐amino‐4‐([1,1′‐biphenyl]‐4‐yl)‐3‐cyano‐7‐isopropyl‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromene) was carried out, and in agreement with a study of a related scaffold, the R configuration at C4 was found to be mandatory for inhibitory activity, while both the C7 diastereomers were found to be active as EAAT1 inhibitors. A study of the stereochemical stability of the four pure stereoisomers 14 g ‐ A – D showed that epimerization takes places at C7 via a ring‐opening, C?C bond rotation, ring‐closing mechanism.  相似文献   

13.
噻唑环和腙键结构均具有一定的生物活性,采用活性结构拼接法,将噻唑环与腙键相结合,设计并合成了16个2-芳醛腙噻唑类化合物,并采用MTT法对目标化合物进行体外抗肿瘤活性筛选。测试结果表明,该类新化合物对乳腺癌细胞株(MDA-MB-231、MDA-MB-468、MCF-7)具有一定的抗增殖活性。其中,N-(2-吡啶)甲醛-2-(4-苯基)噻唑腙的抗增殖活性最好,其IC50值分别为(0.21±0.11)、(0.18±0.10)、(0.17±0.08)μmol/L;而该化合物对其他肿瘤细胞亦具有一定的抗增殖活性,且相对乳腺癌细胞株的生物活性均在10倍及以上,说明其对乳腺癌细胞具有较好的生物活性和选择性,且毒副作用小,值得作为抗乳腺癌先导化合物进行进一步研究。  相似文献   

14.
A series of novel diarylpyrimidines (DAPYs) with a ketone hydrazone substituent on the methylene linker between the pyrimidine nucleus and the aryl moiety at the C‐4 position were synthesized, and their antiviral activity against human immunodeficiency virus (HIV)‐1 in MT‐4 cells was evaluated. Most compounds of this class exhibited excellent activity against wild‐type HIV‐1, with EC50 values in the range of 1.7–13.2 nM . Of these compounds, 2‐bromophenyl‐2‐[(4‐cyanophenyl)amino]‐4‐pyrimidinone hydrazone ( 9 k ) displayed the most potent anti‐HIV‐1 activity (EC50=1.7±0.6 nM ), with excellent selectivity for infected over uninfected cells (SI=5762). In addition, the 4‐methyl phenyl analogue 9 d (EC50=2.4±0.2 nM , SI=18461) showed broad spectrum HIV inhibitory activity, with EC50 values of 2.4±0.2 nM against wild‐type HIV‐1, 5.3±0.4 μM against HIV‐1 double‐mutated strain RES056 (K103N+Y181C), and 5.5 μM against HIV‐2 ROD strain. Furthermore, structure–activity relationship (SAR) data and molecular modeling results for these compounds are also discussed.  相似文献   

15.
A series of benzo[b]furans was synthesized with modification at the 5‐position of the benzene ring by introducing C‐linked substituents (aryl, alkenyl, alkynyl, etc.). These compounds were evaluated for their antiproliferative activities, inhibition of tubulin polymerization, and cell‐cycle effects. Some compounds in this series displayed excellent activity in the nanomolar range against lung cancer (A549) and renal cell carcinoma (ACHN) cancer cell lines. (6‐Methoxy‐5‐((4‐methoxyphenyl)ethynyl)‐3‐methylbenzofuran‐2‐yl)(3,4,5‐trimethoxyphenyl)methanone ( 26 ) and (E)‐3‐(6‐methoxy‐3‐methyl‐2‐(1‐(3,4,5‐trimethoxyphenyl)vinyl)benzofuran‐5‐yl)prop‐2‐en‐1‐ol ( 36 ) showed significant activity in the A549 cell line, with IC50 values of 0.08 and 0.06 μM , respectively. G2/M cell‐cycle arrest and subsequent apoptosis was observed in the A549 cell line after treatment with these compounds. The most active compound in this series, 36 , also inhibited tubulin polymerization with a value similar to that of combretastatin A‐4 (1.95 and 1.86 μM , respectively). Furthermore, detailed biological studies such as Hoechst 33258 staining, DNA fragmentation and caspase‐3 assays, and western blot analyses with the pro‐apoptotic protein Bax and the anti‐apoptotic protein Bcl‐2 also suggested that these compounds induce cell death by apoptosis. Molecular docking studies indicated that compound 36 interacts and binds efficiently with the tubulin protein.  相似文献   

16.
Pim‐1 is a serine/threonine kinase critically involved in the initiation and progression of various types of cancer, especially leukemia, lymphomas and solid tumors such as prostate, pancreas and colon, and is considered a potential drug target against these malignancies. In an effort to discover new potent Pim‐1 inhibitors, a previously identified ATP‐competitive indolyl‐pyrrolone scaffold was expanded to derive structure–activity relationship data. A virtual screening campaign was also performed, which led to the discovery of additional ATP‐competitive inhibitors as well as a series of 2‐aminothiazole derivatives, which are noncompetitive with respect to both ATP and peptide substrate. This mechanism of action, which resembles allosteric inhibition, has not previously been characterized for Pim‐1. Notably, further evaluation of the 2‐aminothiazoles indicated a synergistic inhibitory effect in enzymatic assays when tested in combination with ATP‐competitive inhibitors. A synergistic effect in the inhibition of cell proliferation by ATP‐competitive and ATP‐noncompetitive compounds was also observed in prostate cancer cell lines (PC3), where all Pim‐1 inhibitors tested in showed synergism with the known anticancer agent, paclitaxel. These results further establish Pim‐1 as a target in cancer therapy, and highlight the potential of these agents for use as adjuvant agents in the treatment of cancer diseases in which Pim‐1 is associated with chemotherapeutic resistance.  相似文献   

17.
A structure–activity relationship (SAR) study of the triosmium carbonyl cluster Os3(CO)10(NCCH3)2 was carried out with a series of clusters of the general formula Os3(CO)12?nLn, cationic osmium clusters and a hemi‐labile maltolato‐Os cluster. The SAR results showed that good solubility in DMSO and at least one vacant site are required for cytotoxicity. In vitro evaluation of these new compounds showed that some are selectively active against estrogen receptor (ER)‐independent MDA‐MB‐231 breast cancer cell lines relative to ER‐dependent MCF‐7 breast cancer cells, suggesting that the compounds have a different biological target specific to MDA‐MB‐231 cells. In particular, the maltolato cluster exhibits strong antiproliferative activity, with an IC50 value of 3 μM after only 24 h incubation. Additionally, biochemical assays conducted with the cationic cluster show that it induces apoptosis, although a biological target has not yet been identified. Further research to establish the molecular targets of these compounds and to develop improved organometallic clusters as potential breast cancer therapeutics is underway.  相似文献   

18.
A series of 21 novel, structurally diverse ω‐(isothiocyanato)alkylphosphinates and phosphine oxides (ITCs) were designed and synthesized in moderate to good yields. The synthesized compounds were evaluated for in vitro antiproliferative activity using LoVo and LoVo/DX cancer cell lines. The biological activity of the synthesized compounds was higher than that of natural isothiocyanates such as benzyl isothiocyanate or sulforaphane. The antiproliferative activity of selected ITCs was also tested on selected cancer cell lines: A549, MESSA and MESSA/DX‐5, HL60 and HL60MX2, BALB/3T3, and 4T1. These compounds were assessed for their mechanism of action as inducers of cell‐cycle arrest and apoptosis. Ethyl (6‐isothiocyanatohexyl)(phenyl)phosphinate ( 71 ) was tested in vivo on the 4T1 cell line and demonstrated moderate antitumor activity, similar to that benzyl isothiocyanate and cyclophosphamide.  相似文献   

19.
A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL−1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.  相似文献   

20.
Increasing evidence suggests key roles for members of the mammalian Sterile20‐like (MST) family of kinases in many aspects of biology. MST3 is a member of the STRIPAK complex, the deregulation of which has recently been associated with cancer cell migration and metastasis. Targeting MST3 with small‐molecule inhibitors may be beneficial for the treatment of certain cancers, but little information exists on the potential of kinase inhibitor scaffolds to engage with MST3. In this study we screened MST3 against a library of 277 kinase inhibitors using differential scanning fluorimetry and confirmed 14 previously unknown MST3 inhibitors by X‐ray crystallography. These compounds, of which eight are in clinical trials or FDA approved, comprise nine distinct chemical scaffolds that inhibit MST3 enzymatic activity with IC50 values between 0.003 and 23 μm . The structure–activity relationships explain the differential inhibitory activity of these compounds against MST3 and the structural basis for high binding potential, the information of which may serve as a framework for the rational design of MST3‐selective inhibitors as potential therapeutics and to interrogate the function of this enzyme in diseased cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号