首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Imaging agents that target adenosine type 2A (A2A) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson′s disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A‐specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [123I]MNI‐420 and [18F]MNI‐444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3‐e]‐1,2,4‐triazolo[1,5‐c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine‐18 or iodine‐123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7‐(2‐(4‐(4‐(2‐[18F]fluoroethoxy)phenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]pyrimidin‐5‐amine ([18F]MNI‐444) and 7‐(2‐(4‐(2‐fluoro‐4‐[123I]iodophenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐imidazo[1,2‐c]pyrazolo[4,3‐e]pyrimidin‐5‐amine ([123I]MNI‐420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.  相似文献   

2.
P‐glycoprotein (P‐gp)‐mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7‐dimethoxy‐2‐{2‐[4‐(1H‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2‐[(1‐{4‐[2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1H)‐yl)ethyl]phenyl}‐1H‐1,2,3‐triazol‐4‐yl)methoxy]‐N‐(p‐tolyl)benzamide (compound 7 h ) was identified as a potent modulator of P‐gp‐mediated MDR, with high potency (EC50=127.5±9.1 nM ), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR‐related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P‐gp‐mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P‐gp‐mediated MDR that has good potential for further development.  相似文献   

3.
Reversible protein kinase inhibitors that bind in the ATP cleft can be classified as type I or type II binders. Of these, type I inhibitors address the active form, whereas type II inhibitors typically lock the kinase in an inactive form. At the molecular level, the conformation of the flexible activation loop holding the key DFG motif controls access to the ATP site, thereby determining an active or inactive kinase state. Accordingly, type I and type II kinase inhibitors bind to so‐called DFG‐in or DFG‐out conformations, respectively. Based on our former study on highly selective platelet‐derived growth factor receptor β (PDGFRβ) pyrazin‐2‐one type I inhibitors, we expanded this scaffold toward the deep pocket, yielding the highly potent and effective type II inhibitor 5 (4‐[(4‐methylpiperazin‐1‐yl)methyl]‐N‐[3‐[[6‐oxo‐5‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazin‐3‐yl]methyl]phenyl]benzamide). In vitro characterization, including selectivity panel data from activity‐based assays (300 kinases) and affinity‐based assays (97 kinases) of these PDGFRβ type I ( 1 ; 5‐(4‐hydroxy‐3‐methoxy‐phenyl)‐3‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazin‐2‐one) and II ( 5 ) inhibitors showing the same pyrazin‐2‐one chemotype are compared. Implications are discussed regarding the data for selectivity and efficacy of type I and type II ligands.  相似文献   

4.
We report the development of three fluorescent probes for protein kinase Aurora A that are derived from the well‐known inhibitors MLN8237 and VX‐689 (MK‐5108). Two of these probes target the ATP site of Aurora A, and one targets simultaneously the ATP and substrate sites of the kinase. The probes were tested in an assay with fluorescence polarisation/anisotropy readout, and we demonstrated slow association kinetics and long residence time of the probes (kon 105–107 M ?1 s?1, koff 10?3–10?4 s?1; residence time 500–3000 s). The presence of the Aurora A activator TPX2 caused a significant reduction in the on‐rate and increase in the off‐rate of fluorescent probes targeting ATP site. These observations were supported by Aurora A inhibition assays with MLN8237 and VX‐689. Overall, our results emphasise the importance of rational design of experiments with these compounds and correct interpretation of the obtained data.  相似文献   

5.
A series of (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(para‐substituted phenyl)prop‐2‐en‐1‐ones ( TB1 – TB11 ) was synthesized and tested for inhibitory activity toward human monoamine oxidase (hMAO). All compounds were found to be competitive, selective, and reversible toward hMAO‐B except (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐nitrophenyl)prop‐2‐en‐1‐one ( TB7 ) and (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐chlorophenyl)prop‐2‐en‐1‐one ( TB8 ), which were selective inhibitors of hMAO‐A. The most potent compound, (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐[4‐(dimethylamino)phenyl]prop‐2‐en‐1‐one ( TB5 ), showed the best inhibitory activity and higher selectivity toward hMAO‐B, with Ki and SI values of 0.11±0.01 μm and 13.18, respectively. PAMPA assays for all compounds were carried out in order to evaluate the capacity of the compounds to cross the blood–brain barrier. Moreover, the most potent MAO‐B inhibitor, TB5 , was found to be nontoxic at 5 and 25 μm , with 95.75 and 84.59 % viability among cells, respectively. Molecular docking simulations were carried out to understand the crucial interactions responsible for selectivity and potency.  相似文献   

6.
We describe the 3D‐QSAR‐assisted design of an Aurora kinase A inhibitor with improved physicochemical properties, in vitro activity, and in vivo pharmacokinetic profiles over those of the initial lead. Three different 3D‐QSAR models were built and validated by using a set of 66 pyrazole (Model I) and furanopyrimidine (Model II) compounds with IC50 values toward Aurora kinase A ranging from 33 nM to 10.5 μM . The best 3D‐QSAR model, Model III, constructed with 24 training set compounds from both series, showed robustness (r2CV=0.54 and 0.52 for CoMFA and CoMSIA, respectively) and superior predictive capacity for 42 test set compounds (R2pred=0.52 and 0.67, CoMFA and CoMSIA). Superimposition of CoMFA and CoMSIA Model III over the crystal structure of Aurora kinase A suggests the potential to improve the activity of the ligands by decreasing the steric clash with Val147 and Leu139 and by increasing hydrophobic contact with Leu139 and Gly216 residues in the solvent‐exposed region of the enzyme. Based on these suggestions, the rational redesign of furanopyrimidine 24 (clog P=7.41; Aurora A IC50=43 nM ; HCT‐116 IC50=400 nM ) led to the identification of quinazoline 67 (clog P=5.28; Aurora A IC50=25 nM ; HCT‐116 IC50=23 nM ). Rat in vivo pharmacokinetic studies showed that 67 has better systemic exposure after i.v. administration than 24 , and holds potential for further development.  相似文献   

7.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

8.
A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9‐DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α‐1‐C‐propargyl‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β‐glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX‐28 (α‐1‐C‐[(1‐(3‐trimethylsilyl)propyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol), bearing the 3‐trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM . Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non‐competitive inhibitors, with the exception of the mixed‐type inhibitor DIX‐28.  相似文献   

9.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   

10.
Herein we reveal a simple method for the identification of novel Aurora kinase A inhibitors through substructure searching of an in‐house compound library to select compounds for testing. A hydrazone fragment conferring Aurora kinase activity and heterocyclic rings most frequently reported in kinase inhibitors were used as substructure queries to filter the in‐house compound library collection prior to testing. Five new series of Aurora kinase inhibitors were identified through this strategy, with IC50 values ranging from ~300 nM to ~15 μM , by testing only 133 compounds from a database of ~125 000 compounds. Structure–activity relationship studies and X‐ray co‐crystallographic analysis of the most potent compound, a furanopyrimidine derivative with an IC50 value of 309 nM toward Aurora kinase A, were carried out. The knowledge gained through these studies could help in the future design of potent Aurora kinase inhibitors.  相似文献   

11.
A series of imidazo[2,1‐b][1,3,4]thiadiazole‐linked oxindoles composed of an A, B, C and D ring system were synthesized and investigated for anti‐proliferative activity in various human cancer cell lines; test compounds were variously substituted at rings C and D. Among them, compounds 7 ((E)‐5‐fluoro‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)‐imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), 11 ((E)‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), and 15 ((E)‐6‐chloro‐3‐((6‐phenyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one) exhibited potent anti‐proliferative activity. Treatment with these three compounds resulted in accumulation of cells in G2/M phase, inhibition of tubulin assembly, and increased cyclin‐B1 protein levels. Compound 7 displayed potent cytotoxicity, with an IC50 range of 1.1–1.6 μM , and inhibited tubulin polymerization with an IC50 value (0.15 μM ) lower than that of combretastatin A‐4 (1.16 μM ). Docking studies reveal that compounds 7 and 11 bind with αAsn101, βThr179, and βCys241 in the colchicine binding site of tubulin.  相似文献   

12.
Previous studies by our research group have been concerned with the design of selective inhibitors of heme oxygenases (HO‐1 and HO‐2). The majority of these were based on a four‐carbon linkage of an azole, usually an imidazole, and an aromatic moiety. In the present study, we designed and synthesized a series of inhibition candidates containing a shorter linkage between these groups, specifically, a series of 1‐aryl‐2‐(1H‐imidazol‐1‐yl/1H‐1,2,4‐triazol‐1‐yl)ethanones and their derivatives. As regards HO‐1 inhibition, the aromatic moieties yielding best results were found to be halogen‐substituted residues such as 3‐bromophenyl, 4‐bromophenyl, and 3,4‐dichlorophenyl, or hydrocarbon residues such as 2‐naphthyl, 4‐biphenyl, 4‐benzylphenyl, and 4‐(2‐phenethyl)phenyl. Among the imidazole‐ketones, five ( 36 – 39 , and 44 ) were found to be very potent (IC50<5 μM ) toward both isozymes. Relative to the imidazole‐ketones, the series of corresponding triazole‐ketones showed four compounds ( 54 , 55 , 61 , and 62 ) having a selectivity index >50 in favor of HO‐1. In the case of the azole‐dioxolanes, two of them ( 80 and 85 ), each possessing a 2‐naphthyl moiety, were found to be particularly potent and selective HO‐1 inhibitors. Three non‐carbonyl analogues ( 87 , 89 , and 91 ) of 1‐(4‐chlorophenyl)‐2‐(1H‐imidazol‐1‐yl)ethanone were found to be good inhibitors of HO‐1. For the first time in our studies, two azole‐based inhibitors ( 37 and 39 ) were found to exhibit a modest selectivity index in favor of HO‐2. The present study has revealed additional candidates based on inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   

13.
Sphingosine‐1‐phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure–activity relationship exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five‐membered heterocycles, and the use of diverse 2,2′‐disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochemical properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds. From these optimization studies, a selective S1P1 agonist, N‐methyl‐N‐(4‐{5‐[2‐methyl‐2′‐(trifluoromethyl)biphenyl‐4‐yl]‐1,2,4‐oxadiazol‐3‐yl}benzyl)glycine ( 45 ), and a dual S1P1,5 agonist, N‐methyl‐N‐(3‐{5‐[2′‐methyl‐2‐(trifluoromethyl)biphenyl‐4‐yl]‐1,2,4‐oxadiazol‐3‐yl}benzyl)glycine ( 49 ), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head‐to‐head in an experimental autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan‐S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1‐selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS.  相似文献   

14.
The oxidative polycondensation reaction conditions of 4‐[(pyridine‐3‐yl‐methylene) amino]phenol (4‐PMAP) were studied using H2O2, atmospheric O2, and NaOCl oxidants in an aqueous alkaline medium between 30°C and 90°C. Synthesized oligo‐4‐[(pyridine‐3‐yl‐methylene) amino] phenol (O‐4‐PMAP) was characterized by 1H‐, 13C NMR, FTIR, UV–vis, size exclusion chromatography (SEC), and elemental analysis techniques. The yield of O‐4‐PMAP was found to be 32% (for H2O2 oxidant), 68% (for atmospheric O2 oxidant), and 82% (for NaOCl oxidant). According to the SEC analysis, the number–average molecular weight, weight–average molecular weight, and polydispersity index values of O‐4‐PMAP was found to be 5767, 6646 g mol?1, and 1.152, respectively, using H2O2, and 4540, 5139 g mol?1, and 1.132, respectively, using atmospheric O2, and 9037, 9235 g mol?1, and 1.022, using NaOCl, respectively. According to TG and DSC analyses, O‐4‐PMAP was more stable than 4‐PMAP against thermal decomposition. The weight loss of O‐4‐PMAP was found to be 94.80% at 1000°C. Also, antimicrobial activities of the oligomer were tested against B. cereus, L. monocytogenes, B. megaterium, B. subtilis, E. coli, Str. thermophilus, M. smegmatis, B. brevis, E. aeroginesa, P. vulgaris, M. luteus, S. aureus, and B. jeoreseens. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3327–3333, 2006  相似文献   

15.
A selective 5‐HT 1A receptor agonist : A new series of ligands acting at 5‐HT1A serotonin receptor were identified. Among them (2,2‐diphenyl‐[1,3]oxathiolan‐5‐yl‐methyl)‐(3‐phenyl‐propyl)amine (shown) possesses outstanding activity (pKi=8.72, pD2=7.67, Emax=85) and selectivity (5‐HT1A1D>150), and represents a new 5‐HT1A agonist chemotype.

  相似文献   


16.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

17.
PPARγ agonist DIM‐Ph‐4‐CF 3 , a template for RXRα agonist (E)‐3‐[5‐di(1‐methyl‐1H‐indol‐3‐yl)methyl‐2‐thienyl] acrylic acid: DIM‐Ph‐CF3 is reported to inhibit cancer growth independent of PPARγ and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARγ ligands activate RXR, DIM‐Ph‐4‐CF3 was investigated as an RXR ligand. It displaces 9‐cis‐retinoic acid from RXRα but does not activate RXRα. Structure‐based direct design led to an RXRα agonist.

  相似文献   


18.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

19.
In this work, 1‐halo‐3‐(cyclohexyloxy)propan‐2‐ol ( 3a/3b ) were reacted with N‐methylimidazole ( 4 ) or pyridine ( 5 ) to yield the respective 3‐(3‐(cyclohexyloxy)‐2‐hydroxypropyl)‐1‐methyl‐1H‐imidazol‐3‐ium ( 6a/6b ) or pyridinium ( 7a/7b ) surface‐active ionic liquids (SAIL). The self‐aggregation behavior of these ionic liquids (IL) was evaluated by conductometric and tensiometric methods. The thermal stability and size of the micelles were determined by thermogravimetric analysis and dynamic light scattering studies, respectively. The investigated IL were found to exhibit very low cytotoxicity as evaluated by MTT (3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide) assay on the C6 glioma cell line, indicating that the investigated SAIL can be considered for biological applications like drug and gene delivery. The conventional IL 3‐methyl‐1‐octyl imidazolium bromide ( C 8 mimBr ) was used for comparison in property evaluations.  相似文献   

20.
Based on the potent phosphodiesterase 10 A (PDE10A) inhibitor PQ‐10, we synthesized 32 derivatives to determine relationships between their molecular structure and binding properties. Their roles as potential positron emission tomography (PET) ligands were evaluated, as well as their inhibitory potency toward PDE10A and other PDEs, and their metabolic stability was determined in vitro. According to our findings, halo‐alkyl substituents at position 2 of the quinazoline moiety and/or halo‐alkyloxy substituents at positions 6 or 7 affect not only the compounds′ affinity, but also their selectivity toward PDE10A. As a result of substituting the methoxy group for a monofluoroethoxy or difluoroethoxy group at position 6 of the quinazoline ring, the selectivity for PDE10A over PDE3A increased. The same result was obtained by 6,7‐difluoride substitution on the quinoxaline moiety. Finally, fluorinated compounds (R)‐7‐(fluoromethoxy)‐6‐methoxy‐4‐(3‐(quinoxaline‐2‐yloxy)pyrrolidine‐1‐yl)quinazoline ( 16 a ), 19 a – d , (R)‐tert‐butyl‐3‐(6‐fluoroquinoxalin‐2‐yloxy)pyrrolidine‐1‐carboxylate ( 29 ), and 35 (IC50 PDE10A 11–65 nM ) showed the highest inhibitory potential. Further, fluoroethoxy substitution at position 7 of the quinazoline ring improved metabolic stability over that of the lead structure PQ‐10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号