首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5‐HT7 receptor (5‐HT7R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5‐HT7R antagonist SB‐269970 exhibited antidepressant‐like activity, whereas systemic administration of the 5‐HT7R agonist AS‐19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5‐HT7R antagonists or agonists, aryl biphenyl‐3‐ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5‐HT7R. Among the synthesized compounds, 1‐([2′‐methoxy‐(1,1′‐biphenyl)‐3‐yl]methyl)‐4‐(2‐methoxyphenyl)piperazine ( 28 ) was the best binder to the 5‐HT7R (pKi=7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5‐HT7R over other serotonin receptor subtypes, such as 5‐HT1R, 5‐HT2R, 5‐HT3R, and 5‐HT6R. In a molecular modeling study, the 2‐methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.  相似文献   

2.
The field of small‐molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof‐of‐concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late‐stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype‐selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2‐SORA) series to afford a potent, orally bioavailable 2‐SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5‐disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P‐glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2‐SORA clinical candidate, 5′′‐chloro‐N‐[(5,6‐dimethoxypyridin‐2‐yl)methyl]‐2,2′:5′,3′′‐terpyridine‐3′‐carboxamide (MK‐1064), in mouse, rat, dog, and rhesus sleep models.  相似文献   

3.
Pressureless sintering of pure γ‐Y2Si2O7 powders that had been synthesized by a solid‐liquid reaction method using Y2O3 and SiO2 powders with Li2O, MgO, and Al2O3 additives was reported. The sintering kinetics of γ‐Y2Si2O7 powders was analyzed to track details of densification evolution. Apparent activation energies of the densification of γ‐Y2Si2O7 powders were reported for the first time, which was 57.1, 96.6, and 100.2 kJ/mol for the powders with Li2O, MgO, and Al2O3 additives, respectively, indicating that Li2O could promote the densification behavior effectively. The flexural strengths as a function of temperature for the γ‐Y2Si2O7 ceramics with different additives were also investigated. The degradation of high‐temperature flexural strength was mainly ascribed to the softening of grain‐boundary glassy phase. γ‐Y2Si2O7 specimens fabricated using the powders with MgO or Al2O3 additives exhibited better high‐temperature mechanical properties.  相似文献   

4.
Human Urotensin‐II (U‐II) is the most potent mammalian vasoconstrictor known. 1 Thus, a U‐II antagonist would be of therapeutic value in a number of cardiovascular disorders. 2 Here, we describe our work on the prediction of the structure of the human U‐II receptor (hUT2R) using GEnSeMBLE (GPCR Ensemble of Structures in Membrane BiLayer Environment) complete sampling Monte Carlo method. With the validation of our predicted structures, we designed a series of new potential antagonists predicted to bind more strongly than known ligands. Next, we carried out R‐group screening to suggest a new ligand predicted to bind with 7 kcal mol?1 better energy than 1‐{2‐[4‐(2‐bromobenzyl)‐4‐hydroxypiperidin‐1‐yl]ethyl}‐3‐(thieno[3,2‐b]pyridin‐7‐yl)urea, the designed antagonist predicted to have the highest affinity for the receptor. Some of these predictions were tested experimentally, validating the computational results. Using the pharmacophore generated from the predicted structure for hUT2R bound to ACT‐058362, we carried out virtual screening based on this binding site. The most potent hit compounds identified contained 2‐(phenoxymethyl)‐1,3,4‐thiadiazole core, with the best derivative exhibiting an IC50 value of 0.581 μM against hUT2R when tested in vitro. Our efforts identified a new scaffold as a potential new lead structure for the development of novel hUT2R antagonists, and the computational methods used could find more general applicability to other GPCRs.  相似文献   

5.
Considering the phonon scattering effect and the stability of t′ zirconia, Sn4+ ion is recognized as an appropriate dopant to achieve the best combination of thermal insulating capability and durability of yttria‐stabilized zirconia thermal barrier coatings (TBCs). In this research, unusual lattice expansion and strong structural disordering were observed in a series of SnO2‐doped Y2O3‐stabilized ZrO2 compounds, which are caused by the tetragonal distortion of oxygen coordination. Phonon scattering due to the structural disordering rather than point defects of Sn4+ substitutions predominates in reducing the thermal conductivity. However, deterioration of the thermal properties was observed at high doping content, which may be attributed to the t‐m phase transformation during the measurements. Considering the structure stability and thermal properties, SnO2‐doped Y2O3‐stabilized ZrO2 compounds can be promising candidates for TBCs.  相似文献   

6.
Cleavage and reconstitution of a bond in the piperidine ring of ifenprodil ( 1 ) leads to 7‐methoxy‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ols, a novel class of NR2B‐selective NMDA receptor antagonists. The secondary amine 7‐methoxy‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐1‐ol ( 12 ), which was synthesized in six steps starting from 2‐phenylethylamine 3 , represents the central building block for the introduction of several N‐linked residues. A distance of four methylene units between the basic nitrogen atom and the phenyl residue in the side chain results in high NR2B affinity. The 4‐phenylbutyl derivative 13 (WMS‐1405, Ki=5.4 nM ) and the conformationally restricted 4‐phenylcyclohexyl derivative 31 (Ki=10 nM ) represent the most potent NR2B ligands of this series. Whereas 13 shows excellent selectivity, the 4‐phenylcyclohexyl derivative 31 also interacts with σ1 (Ki=33 nM ) and σ2 receptors (Ki=82 nM ). In the excitotoxicity assay the phenylbutyl derivative 13 inhibits the glutamate‐induced cytotoxicity with an IC50 value of 360 nM , indicating that 13 is an NMDA antagonist.  相似文献   

7.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

8.
A series of bioisosteric N1‐ and N2‐substituted 5‐(piperidin‐4‐yl)‐3‐hydroxypyrazole analogues of the partial GABAAR agonists 4‐PIOL and 4‐PHP have been designed, synthesized, and characterized pharmacologically. The unsubstituted 3‐hydroxypyrazole analogue of 4‐PIOL ( 2 a ; IC50~300 μM ) is a weak antagonist at the α1β2γ2 GABAAR, whereas substituting the N1‐ or N2‐position with alkyl or aryl substituents resulted in antagonists with binding affinities in the high nanomolar to low micromolar range at native rat GABAARs. Docking studies using a α1β2γ2 GABAAR homology model along with the obtained SAR indicate that the N1‐substituted analogues of 4‐PIOL and 4‐PHP, 2 a – k , and previously reported 3‐substituted 4‐PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2‐substituted analogues of 4‐PIOL and 4‐PHP, 3 b – k , are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold.  相似文献   

9.
Bivalent ligands are potential tools to investigate the dimerisation of G‐protein‐coupled receptors. Based on the (R)‐argininamide BIBP 3226, a potent and selective neuropeptide Y Y1 receptor (Y1R) antagonist, we prepared a series of bivalent Y1R ligands with a wide range of linker lengths (8–36 atoms). Exploiting the high eudismic ratio (>1000) of the parent compound, we synthesised sets of R,R‐, R,S‐ and S,S‐configured bivalent ligands to gain insight into the “bridging” of two Y1Rs by simultaneous interaction with both binding sites of a putative receptor dimer. Except for the S,S isomers, the bivalent ligands are high‐affinity Y1R antagonists, as determined by Ca2+ assays on HEL cells and radioligand competition assays on human Y1R‐expressing SK‐N‐MC and MCF‐7 cells. Whereas the R,R enantiomers are most potent, no marked differences were observed relative to the corresponding meso forms. The difference between R,R and R,S diastereomers was most pronounced (about sixfold) in the case of the Y1R antagonist containing a spacer of 20 atoms in length. Among the R,R enantiomers, linker length and structural diversity had little effect on Y1R affinity. Although the bivalent ligands preferentially bind to the Y1R, the selectivity toward human Y2, Y4, and Y5 receptors was markedly lower than that of the monovalent argininamides. The results of this study neither support the presence of Y1R dimers nor the simultaneous occupation of both binding pockets by the twin compounds. However, as the interaction with Y1R dimers cannot be unequivocally ruled out, the preparation of a bivalent radioligand is suggested to determine the ligand–receptor stoichiometry. Aiming at such radiolabelled pharmacological tools, prototype twin compounds were synthesised, containing an N‐propionylated amino‐functionalised branched linker (Ki≥18 nM ), a tritiated form of which can be easily prepared.  相似文献   

10.
P‐glycoprotein (P‐gp)‐mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7‐dimethoxy‐2‐{2‐[4‐(1H‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2‐[(1‐{4‐[2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1H)‐yl)ethyl]phenyl}‐1H‐1,2,3‐triazol‐4‐yl)methoxy]‐N‐(p‐tolyl)benzamide (compound 7 h ) was identified as a potent modulator of P‐gp‐mediated MDR, with high potency (EC50=127.5±9.1 nM ), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR‐related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P‐gp‐mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P‐gp‐mediated MDR that has good potential for further development.  相似文献   

11.
The purinergic signaling system includes membrane-bound receptors for extracellular purines and pyrimidines, and enzymes/transporters that regulate receptor activation by endogenous agonists. Receptors include: adenosine (A1, A2A, A2B, and A3) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) receptors (all GPCRs), as well as P2X receptors (ion channels). Receptor activation, especially accompanying physiological stress or damage, creates a temporal sequence of signaling to counteract this stress and either mobilize (P2Rs) or suppress (ARs) immune responses. Thus, modulation of this large signaling family has broad potential for treating chronic diseases. Experimentally determined structures represent each of the three receptor families. We focus on selective purinergic agonists (A1, A3), antagonists (A3, P2Y14), and allosteric modulators (P2Y1, A3). Examples of applying structure-based design, including the rational modification of known ligands, are presented for antithrombotic P2Y1R antagonists and anti-inflammatory P2Y14R antagonists and A3AR agonists. A3AR agonists are a potential, nonaddictive treatment for chronic neuropathic pain.  相似文献   

12.
A series of 3,5‐bis(benzylidene)‐4‐piperidones 3 were converted into the corresponding 3,5‐bis(benzylidene)‐1‐phosphono‐4‐piperidones 5 via diethyl esters 4 . The analogues in series 4 and 5 displayed marked growth inhibitory properties toward human Molt 4/C8 and CEM T‐lymphocytes as well as murine leukemia L1210 cells. In general, the N‐phosphono compounds 5 , which are more hydrophilic than the analogues in series 3 and 4 , were the most potent cluster of cytotoxins, and, in particular, 3,5‐bis‐(2‐nitrobenzylidene)‐1‐phosphono‐4‐piperidone 5 g had an average IC50 value of 34 nM toward the two T‐lymphocyte cell lines. Four of the compounds displayed potent cytotoxicity toward a panel of nearly 60 human tumor cell lines, and nanomolar IC50 values were observed in a number of cases. The mode of action of 5 g includes the induction of apoptosis and inhibition of cellular respiration. Most of the members of series 4 as well as several analogues in series 5 are potent multi‐drug resistance (MDR) reverting compounds. Various correlations were noted between certain molecular features of series 4 and 5 and cytotoxic properties, affording some guidelines in expanding this study.  相似文献   

13.
The synergistic effect of 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazalone‐5 (HPMBP, HA) and di‐(2‐ethylhexyl)‐2‐ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE(III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A2.B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change ΔG (?17.06 kJ mol?1), enthalpy change ΔH (?35.08 kJ mol?1) and entropy change ΔS (?60.47 J K?1 mol?1) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

15.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

16.
Given their high neuroprotective potential, ligands that block GluN2B‐containing N‐methyl‐D ‐aspartate (NMDA) receptors by interacting with the ifenprodil binding site located on the GluN2B subunit are of great interest for the treatment of various neuronal disorders. In this study, a novel class of GluN2B‐selective NMDA receptor antagonists with the benzo[7]annulene scaffold was prepared and pharmacologically evaluated. The key intermediate, N‐(2‐methoxy‐5‐oxo‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐yl)acetamide ( 11 ), was obtained by cyclization of 3‐acetamido‐5‐(3‐methoxyphenyl)pentanoic acid ( 10 b ). The final reaction steps comprise hydrolysis of the amide, reduction of the ketone, and reductive alkylation, leading to cis‐ and trans‐configured 7‐(ω‐phenylalkylamino)benzo[7]annulen‐5‐ols. High GluN2B affinity was observed with cis‐configured γ‐amino alcohols substituted with a 3‐phenylpropyl moiety at the amino group. Removal of the benzylic hydroxy moiety led to the most potent GluN2B antagonists of this series: 2‐methoxy‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 20 a , Ki=10 nM ) and 2‐methoxy‐N‐methyl‐N‐(3‐phenylpropyl)‐6,7,8,9‐tetrahydro‐5H‐benzo[7]annulen‐7‐amine ( 23 a , Ki=7.9 nM ). The selectivity over related receptors (phencyclidine binding site of the NMDA receptor, σ1 and σ2 receptors) was recorded. In a functional assay measuring the cytoprotective activity of the benzo[7]annulenamines, all tested compounds showed potent NMDA receptor antagonistic activity. Cytotoxicity induced via GluN2A subunit‐containing NMDA receptors was not inhibited by the new ligands.  相似文献   

17.
With solid‐state reaction method, series of Y4Si2O7N2:Tb3+ phosphors were prepared under the high‐temperature and high‐pressure conditions. The photoluminescence properties at room and high temperature were investigated. Two groups of emission lines have been observed, which are corresponding to Tb3+ 5D37FJ (J = 6, 5, 4, 3, 2) and 5D47FJ (J = 6, 5, 4, 3) transitions. The physical mechanisms for excitation, emission, concentration quenching, and thermal quenching were investigated. The cross‐relaxation mechanism between the 5D3 and 5D4 emission was investigated and discussed. The Tb–Tb critical distance for cross‐relaxation was calculated to be ~13 Å. The optimum Tb3+ concentration in this phosphor is 15 mol%. The quadrupole–quadrupole interaction dominates the non‐radiative energy transfer between the Tb3+ luminescence centers and causes the concentration quenching. This phosphor shows high thermal stabilities that at 150°C the intensity remains 92% compared with that measured at room temperature. The present work suggests that this Tb3+‐doped Y4Si2O7N2 material is a kind of potential green‐emitting phosphor.  相似文献   

18.
New solid solution nanocrystals with fluorite‐type cubic structure in the ceria (CeO2)‐yttrium niobate (1/4Y3NbO7) system were directly formed at 120°C–240°C from the precursor solution mixtures of (NH4)Ce(NO3)6, YCl3·6H2O, and NbCl5 under mild hydrothermal conditions in the presence of aqueous ammonia. The hydrothermal formation of cubic solid solution nanocrystals in the wide composition range of CeO2 (mol%) = 10–100 in the CeO2–1/4Y3NbO7 system was effectively achieved via the assistance of the presence of CeO2 component more than 10 mol% as a promoter with the same fluorite‐type structure. The optical band gap of the solid solutions gradually decreased with increased CeO2 component. The high phase stability of the solid solutions in the CeO2–1/4Y3NbO7 system was confirmed, i.e., the single cubic phase of the solid solutions was maintained after heat treatment at 600°C–1500°C for 1 h in air. The presence of Y3NbO7 as an inhibitor and the substitutional incorporation of Y3NbO7 into the lattice, CeO2 effectively controlled the crystallite growth of CeO2, and nano‐sized cubic solid solutions with high specific surface areas were maintained after heat treatment up to 800°C–1000°C for 1 h air.  相似文献   

19.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

20.
Imaging agents that target adenosine type 2A (A2A) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson′s disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A‐specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [123I]MNI‐420 and [18F]MNI‐444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3‐e]‐1,2,4‐triazolo[1,5‐c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine‐18 or iodine‐123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7‐(2‐(4‐(4‐(2‐[18F]fluoroethoxy)phenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐pyrazolo[4,3‐e][1,2,4]triazolo[1,5‐c]pyrimidin‐5‐amine ([18F]MNI‐444) and 7‐(2‐(4‐(2‐fluoro‐4‐[123I]iodophenyl)piperazin‐1‐yl)ethyl)‐2‐(furan‐2‐yl)‐7H‐imidazo[1,2‐c]pyrazolo[4,3‐e]pyrimidin‐5‐amine ([123I]MNI‐420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号