首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterobivalent ligands that possess pharmacophores designed to interact with both the A1 adenosine receptor (A1AR) and the β2 adrenergic receptor (β2AR) were prepared. More specifically, these ligands contain an adenosine moiety that is linked via its N6‐position to the amino group of the saligenin‐substituted ethanolamine moiety present in the well‐known β2AR agonist, salbutamol. The affinities of these ligands were determined at both receptors and found to vary with linker length and composition. With all compounds, affinity and functional potencies were found to have selectivity for the A1AR over the β2AR. In all cases, cAMP accumulation (a β2AR‐mediated response) was mainly observed when the A1AR was blocked or its function decreased by pertussis toxin or chronic agonist treatment. This suggests that heterobivalent compounds for receptors that mediate opposite responses might be useful for elucidating the mechanisms of receptor cross‐talk and how this interaction, in terms of responsiveness, may change under pathophysiological conditions.  相似文献   

2.
Monoamine oxidase (MAO) is an important drug target for the treatment of neurological disorders. Several 3‐arylcoumarin derivatives were previously described as interesting selective MAO‐B inhibitors. Preserving the trans‐stilbene structure, a series of 2‐arylbenzofuran and corresponding 3‐arylcoumarin derivatives were synthesized and evaluated as inhibitors of both MAO isoforms, MAO‐A and MAO‐B. In general, both types of derivatives were found to be selective MAO‐B inhibitors, with IC50 values in the nano‐ to micromolar range. 5‐Nitro‐2‐(4‐methoxyphenyl)benzofuran ( 8 ) is the most active compound of the benzofuran series, presenting MAO‐B selectivity and reversible inhibition (IC50=140 nM ). 3‐(4′‐Methoxyphenyl)‐6‐nitrocoumarin ( 15 ), with the same substitution pattern as that of compound 8 , was found to be the most active MAO‐B inhibitor of the coumarin series (IC50=3 nM ). However, 3‐phenylcoumarin 14 showed activity in the same range (IC50=6 nM ), is reversible, and also severalfold more selective than compound 15 . Docking experiments for the most active compounds into the MAO‐B and MAO‐A binding pockets highlighted different interactions between the derivative classes (2‐arylbenzofurans and 3‐arylcoumarins), and provided new information about the enzyme–inhibitor interaction and the potential therapeutic application of these scaffolds.  相似文献   

3.
In recent years, cannabinoid type 2 receptors (CB2R) have emerged as promising therapeutic targets in a wide variety of diseases. Selective ligands of CB2R are devoid of the psychoactive effects typically observed for CB1R ligands. Based on our recent studies on a class of pyridazinone 4‐carboxamides, further structural modifications of the pyridazinone core were made to better investigate the structure–activity relationships for this promising scaffold with the aim to develop potent CB2R ligands. In binding assays, two of the new synthesized compounds [6‐(3,4‐dichlorophenyl)‐2‐(4‐fluorobenzyl)‐cisN‐(4‐methylcyclohexyl)‐3‐oxo‐2,3‐dihydropyridazine‐4‐carboxamide ( 2 ) and 6‐(4‐chloro‐3‐methylphenyl)‐cisN‐(4‐methylcyclohexyl)‐3‐oxo‐2‐pentyl‐2,3‐dihydropyridazine‐4‐carboxamide ( 22 )] showed high CB2R affinity, with Ki values of 2.1 and 1.6 nm , respectively. In addition, functional assays of these compounds and other new active related derivatives revealed their pharmacological profiles as CB2R inverse agonists. Compound 22 displayed the highest CB2R selectivity and potency, presenting a favorable in silico pharmacokinetic profile. Furthermore, a molecular modeling study revealed how 22 produces inverse agonism through blocking the movement of the toggle‐switch residue, W6.48.  相似文献   

4.
N‐Methyl‐bis‐(1,2,3,4‐tetrahydroisoquinolinium) analogues derived from AG525 (1,1′‐(propane‐1,3‐diyl)‐bis‐(6,7‐dimethoxy‐2‐methyl‐1,2,3,4‐tetrahydroisoquinoline)) stereoisomers and tetrandrine, a rigid bis‐(1,2,3,4‐tetrahydroisoquinoline) analogue with an S,S configuration, were synthesized and tested for their affinity for small‐conductance calcium‐activated potassium channel (SK/KCa2) subtypes using radioligand binding assays. A significant increase in affinity was observed for the quaternized analogues over the parent 1,2,3,4‐tetrahydroisoquinoline compounds. Interestingly, the impact of stereochemistry was not the same in the two groups of compounds. For quaternized analogues, affinities of S,S and R,R isomers for SK2 and SK3 channels were similar and in both cases higher than that of the meso derivative. Among the bis‐tetrahydroisoquinoline compounds, the S,S isomers exhibited high affinity, while the R,R and meso isomers had similarly lower affinities. Furthermore, the SK2/SK3 selectivity ratio was slightly increased for quaternized analogues. Bis‐(1,2,3,4‐tetrahydroisoquinolinium) represents a new scaffold for the development of high‐affinity ligands for SK channel subtypes.  相似文献   

5.
2‐Amino[1,2,4]triazolo[1,5‐c]quinazolines were identified as potent adenosine receptor (AR) antagonists. Synthetic strategies were devised to gain access to a broad range of derivatives including novel polyheterocyclic compounds. Potent and selective A3AR antagonists were discovered, including 3,5‐diphenyl[1,2,4]triazolo[4,3‐c]quinazoline ( 17 , Ki human A3AR 1.16 nm ) and 5′‐phenyl‐1,2‐dihydro‐3′H‐spiro[indole‐3,2′‐[1,2,4]triazolo[1,5‐c]quinazolin]‐2‐one ( 20 , Ki human A3AR 6.94 nm ). In addition, multitarget antagonists were obtained, such as the dual A1/A3 antagonist 2,5‐diphenyl[1,2,4]triazolo[1,5‐c]quinazoline ( 13 b , Ki human A1AR 51.6 nm , human A3AR 11.1 nm ), and the balanced pan‐AR antagonists 5‐(2‐thienyl)[1,2,4]triazolo[1,5‐c]quinazolin‐2‐amine ( 11 c , Ki human A1AR 131 nm , A2AAR 32.7 nm , A2BAR 150 nm , A3AR 47.5 nm ) and 9‐bromo‐5‐phenyl[1,2,4]triazolo[1,5‐c]quinazolin‐2‐amine ( 11 q , Ki human A1AR 67.7 nm , A2AAR 13.6 nm , A2BAR 75.0 nm , A3AR 703 nm ). In many cases, significantly different affinities for human and rat receptors were observed, which emphasizes the need for caution in extrapolating conclusions between different species.  相似文献   

6.
Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.  相似文献   

7.
Annelated purinedione derivatives have been shown to act as possible multiple-target ligands, addressing adenosine receptors and monoaminooxidases. In this study, based on our previous results, novel annelated pyrimido- and diazepino[2,1-f]purinedione derivatives were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blocking monoamine oxidase B. A library of 19 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. This allowed 9-(2-chloro-6-fluorobenzyl)-3-ethyl-1-methyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione ( 13 e ; Ki human A2AAR: 264 nM and IC50 human MAO-B: 243 nM) to be identified as the most potent dual-acting ligand from this series. ADMET parameters were estimated in vitro, and analysis of the structure-activity relationships was complemented by molecular-docking studies based on previously published X-ray structures of the protein targets. Such dual-acting ligands, by selectively blocking A2A AR, accompanied by the inhibition of dopamine metabolizing enzyme MAO-B, might provide symptomatic and neuroprotective effects in, among others, the treatment of Parkinson disease  相似文献   

8.
Until recently, discriminating between homomeric 5‐HT3A and heteromeric 5‐HT3AB receptors was only possible with ligands that bind in the receptor pore. This study describes the first series of ligands that can discriminate between these receptor types at the level of the orthosteric binding site. During a recent fragment screen, 2‐chloro‐3‐(4‐methylpiperazin‐1‐yl)quinoxaline (VUF10166) was identified as a ligand that displays an 83‐fold difference in [3H]granisetron binding affinity between 5‐HT3A and 5‐HT3AB receptors. Fragment hit exploration, initiated from VUF10166 and 3‐(4‐methylpiperazin‐1‐yl)quinoxalin‐2‐ol, resulted in a series of compounds with higher affinity at either 5‐HT3A or 5‐HT3AB receptors. These ligands reveal that a single atom is sufficient to change the selectivity profile of a compound. At the extremes of the new compounds were 2‐amino‐3‐(4‐methylpiperazin‐1‐yl)quinoxaline, which showed 11‐fold selectivity for the 5‐HT3A receptor, and 2‐(4‐methylpiperazin‐1‐yl)quinoxaline, which showed an 8.3‐fold selectivity for the 5‐HT3AB receptor. These compounds represent novel molecular tools for studying 5‐HT3 receptor subtypes and could help elucidate their physiological roles.  相似文献   

9.
Exogenous adenosine and its metabolite inosine exert anti-inflammatory effects in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We analyzed whether these cells are able to synthesize adenosine/inosine and which adenosine receptors (ARs) contribute to anti-inflammatory effects. The functionality of synthesizing enzymes and ARs was tested using agonists/antagonists. Both OA and RA cells expressed CD39 (converts ATP to AMP), CD73 (converts AMP to adenosine), ADA (converts adenosine to inosine), ENT1/2 (adenosine transporters), all AR subtypes (A1, A2A, A2B and A3) and synthesized predominantly adenosine. The CD73 inhibitor AMPCP significantly increased IL-6 and decreased IL-10 in both cell types, while TNF only increased in RA cells. The ADA inhibitor DAA significantly reduced IL-6 and induced IL-10 in both OA and RA cells. The A2AAR agonist CGS 21680 significantly inhibited IL-6 and induced TNF and IL-10 only in RA, while the A2BAR agonist BAY 60-6583 had the same effect in both OA and RA. Taken together, OA and RA synoviocytes express the complete enzymatic machinery to synthesize adenosine/inosine; however, mainly adenosine is responsible for the anti- (IL-6 and IL-10) or pro-inflammatory (TNF) effects mediated by A2A- and A2BAR. Stimulating CD39/CD73 with simultaneous ADA blockage in addition to TNF inhibition might represent a promising therapeutic strategy.  相似文献   

10.
8‐Benzyl‐substituted tetrahydropyrazino[2,1‐f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual‐target‐directed A1/A2A adenosine receptor antagonists were identified. Several compounds showed triple‐target inhibition; one of the best compounds was 8‐(2,4‐dichloro‐5‐fluorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione ( 72 ) (human AR: Ki A1 217 nM , A2A 233 nM ; IC50 MAO‐B: 508 nM ). Dichlorinated compound 36 [8‐(3,4‐dichlorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione] was found to be the best triple‐target drug in rat (Ki A1 351 nM , A2A 322 nm; IC50 MAO‐B: 260 nM ), and may serve as a useful tool for preclinical proof‐of‐principle studies. Compounds that act at multiple targets relevant for symptomatic as well as disease‐modifying treatment of neurodegenerative diseases are expected to show advantages over single‐target therapeutics.  相似文献   

11.
12.
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies.  相似文献   

13.
Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.  相似文献   

14.
Structure‐based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6 % success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5‐HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μm . Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20‐fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction.  相似文献   

15.
Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.  相似文献   

16.
The design of compounds selective for the MT1 melatonin receptor is still a challenging task owing to the limited knowledge of the structural features conferring selectivity for the MT1 subtype, and only few selective compounds have been reported so far. N‐(Anilinoalkyl)amides are a versatile class of melatonin receptor ligands that include nonselective MT1/MT2 agonists and MT2‐selective antagonists. We synthesized a new series of N‐(anilinoalkyl)amides bearing 3‐arylalkyloxy or 3‐alkyloxy substituents at the aniline ring, looking for new potent and MT1‐selective ligands. To evaluate the effect of substituent size and shape on binding affinity and intrinsic activity, both flexible and conformationally constrained derivatives were prepared. The phenylbutyloxy substituent gave the best result, providing the partial agonist 4 a , which was endowed with high MT1 binding affinity (pKi=8.93) and 78‐fold selectivity for the MT1 receptor. To investigate the molecular basis for agonist recognition, and to explain the role of the 3‐arylalkyloxy substituent, we built a homology model of the MT1 receptor based on the β2 adrenergic receptor crystal structure in its activated state. A binding mode for MT1 agonists is proposed, as well as a hypothesis regarding the receptor structural features responsible for MT1 selectivity of compounds with lipophilic arylalkyloxy substituents.  相似文献   

17.
The ρ‐containing γ‐aminobutyric acid type A receptors (GABAARs) play an important role in controlling visual signaling. Therefore, ligands that selectively target these GABAARs are of interest. In this study, we demonstrate that the partial GABAAR agonist imidazole‐4‐acetic acid (IAA) is able to penetrate the blood–brain barrier in vivo; we prepared a series of α‐ and N‐alkylated, as well as bicyclic analogues of IAA to explore the structure–activity relationship of this scaffold focusing on the acetic acid side chain of IAA. The compounds were prepared via IAA from l ‐histidine by an efficient minimal‐step synthesis, and their pharmacological properties were characterized at native rat GABAARs in a [3H]muscimol binding assay and at recombinant human α1β2γ2S and ρ1 GABAARs using the FLIPR? membrane potential assay. The (+)‐α‐methyl‐ and α‐cyclopropyl‐substituted IAA analogues ((+)‐ 6 a and 6 c , respectively) were identified as fairly potent antagonists of the ρ1 GABAAR that also displayed significant selectivity for this receptor over the α1β2γ2S GABAAR. Both 6 a and 6 c were shown to inhibit GABA‐induced relaxation of retinal arterioles from porcine eyes.  相似文献   

18.
Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.  相似文献   

19.
In recent years, DAPK‐related apoptosis‐inducing protein kinase 2 (DRAK2) has emerged as a promising target for the treatment of a variety of autoimmune diseases and for the prevention of graft rejection after organ transplantation. However, medicinal chemistry optimization campaigns for the discovery of novel small‐molecule inhibitors of DRAK2 have not yet been published. Screening of a proprietary compound library led to the discovery of a benzothiophene analogue that displays an affinity constant (Kd) value of 0.25 μM . Variation of the core scaffold and of the substitution pattern afforded a series of 5‐arylthieno[2,3‐b]pyridines with strong binding affinity (Kd=0.008 μM for the most potent representative). These compounds also show promising activity in a functional biochemical DRAK2 enzyme assay, with an IC50 value of 0.029 μM for the most potent congener. Selectivity profiling of the most potent compounds revealed that they lack selectivity within the DAPK family of kinases. However, one of the less potent analogues is a selective ligand for DRAK2 and can be used as starting point for the synthesis of selective and potent DRAK2 inhibitors.  相似文献   

20.
To discover novel δ‐opioid receptor ligands derived from SNC80 ( 1 ), a series of 6,8‐diazabicyclo[3.2.2]nonane derivatives bearing two aromatic moieties was prepared, and the affinity toward δ, μ, and κ receptors, as well as σ receptors, was investigated. After removal of the 4‐methoxybenzyl and 2,4‐dimethoxybenzyl protecting groups, the pharmacophoric N,N‐diethylcarbamoylbenzyl residue was attached to the 6,8‐diazabicyclo[3.2.2]nonane framework to yield the designed δ receptor ligands. In a first series of compounds the benzhydryl moiety of SNC80 was dissected, and one phenyl ring was attached to the bicyclic framework. In a second series of δ ligands the complete benzhydryl moiety was introduced into the bicyclic scaffold. The determined δ receptor affinities show that compounds based on an (R)‐glutamate‐derived bicyclic scaffold possess higher δ receptor affinity than their (S)‐glutamate‐derived counterparts. Furthermore, an intact benzhydryl moiety leads to δ receptor ligands that are more potent than compounds with two separated aromatic moieties. Compound 24 , with the same spatial arrangement of substituents around the benzhydryl stereocenter as SNC80, shows the highest δ receptor affinity of this series: Ki=24 nM . Whereas the highly potent δ ligands reveal good selectivity against μ and κ receptors, the σ1 and/or σ2 affinities of some compounds are almost in the same range as their δ receptor affinities, such as compound 25 (σ2: Ki=83 nM ; δ: Ki=75 nM ). In [35S]GTPγS assays the most potent δ ligands 24 and 25 showed almost the same intrinsic activity as the full agonist SNC80, proving the agonistic activity of 24 and 25 . The enantiomeric 4‐benzylidene derivatives 15 and ent‐ 15 showed selective cytotoxicity toward the 5637 (bladder) and A‐427 (small‐cell lung) human tumor cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号