首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eleven fatty acid analogues incorporating four‐membered carbocycles (cyclobutenes, cyclobutanes, cyclobutanones, and cyclobutanols) were investigated for the ability to inhibit the growth of Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb). A number of the analogues displayed inhibitory activity against both mycobacterial species in minimal media. Several of the molecules displayed potent levels of inhibition against Mtb, with MIC values equal to or below those observed with the anti‐tuberculosis drugs D ‐cycloserine and isoniazid. In contrast, two of the analogues that display the greatest activity against Mtb failed to inhibit E. coli growth under either set of conditions. Thus, the active molecules identified herein may provide the basis for the development of anti‐mycobacterial agents against Mtb.  相似文献   

2.
To evaluate the feasibility of developing drugs that may be active against both malaria and tuberculosis (TB) by using in part putative cholesterol transporters in the causative pathogens and through enhancement of passive diffusion in granulomatous TB, artemisinin–cholesterol conjugates were synthesized by connecting the component molecules through various linkers. The compounds were screened in vitro against Plasmodium falciparum (Pf) and Mycobacterium tuberculosis (Mtb). Antimalarial activities (IC50) against Pf drug‐sensitive NF54, and drug‐resistant K1 and W2 strains ranged from 0.03–2.6, 0.03–1.9, and 0.02–1.7 μm . Although the compounds are less active than the precursor artemisinin derivatives, the cholesterol moiety renders the compounds relatively insoluble in the culture medium, and variation in solubilities among the different compounds may reflect in the range of efficacies observed. Activities against Mtb H37Rv were assessed using a standardized colony‐forming unit (CFU) assay after 24 h pretreatment of cultures with each of the compounds. Percentage inhibition ranged from 3–38 % and 18–52 % at 10 and 80 μm , respectively. Thus, in contrast to the comparator drug artemether, the conjugates display enhanced activities. The immediate aims include the preparation of conjugates with enhanced aqueous solubilities, assays against malaria and TB in vivo, and for TB, assays using an infected macrophage model and assessment of granuloma influx.  相似文献   

3.
4.
An innovative and straightforward synthesis of second‐generation 2‐arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory‐made molecules was developed. The synthesis of C2‐arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16‐fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA‐1199B strain at concentrations of 0.25 and 0.5 μg mL?1 (1 and 1.5 μm , respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL?1), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone‐resistant strains.  相似文献   

5.
The diaryl ethers are a novel class of antituberculosis drug candidates that inhibit InhA, the enoyl‐ACP reductase involved in the fatty acid biosynthesis (FASII) pathway, and have antibacterial activity against both drug‐sensitive and drug‐resistant strains of Mycobacterium tuberculosis. In the present work, we demonstrate that two time‐dependent B‐ring modified diaryl ether InhA inhibitors have antibacterial activity in a mouse model of TB infection when delivered by intraperitoneal injection. We propose that the efficacy of these compounds is related to their residence time on the enzyme, and to identify structural features that modulate drug–target residence time in this system, we have explored the inhibition of InhA by a series of B‐ring modified analogues. Seven ortho‐substituted compounds were found to be time‐dependent inhibitors of InhA, where the slow step leading to the final enzyme–inhibitor complex (EI*) is thought to correlate with closure and ordering of the InhA substrate binding loop. A detailed mechanistic understanding of the molecular basis for residence time in this system will facilitate the development of InhA inhibitors with improved in vivo activity.  相似文献   

6.
Isoniazid (INH) remains one of the cornerstones of antitubercular chemotherapy for drug‐sensitive strains of M. tuberculosis bacteria. However, the increasing prevalence of multidrug‐resistant (MDR) and extensively drug‐resistant (XDR) strains containing mutations in the KatG enzyme, which is responsible for the activation of INH into its antitubercular form, have rendered this drug of little or no use in many cases of drug‐resistant tuberculosis. Presented herein is a novel family of antitubercular direct NADH‐dependent 2‐trans enoyl–acyl carrier protein reductase (InhA) inhibitors based on an N‐benzyl‐4‐((heteroaryl)methyl)benzamide template; unlike INH, these do not require prior activation by KatG. Given their direct InhA target engagement, these compounds should be able to circumvent KatG‐related resistance in the clinic. The lead molecules were shown to be potent inhibitors of InhA and showed activity against M. tuberculosis bacteria. This new family of inhibitors was found to be chemically tractable, as exemplified by the facile synthesis of analogues and the establishment of structure–activity relationships. Furthermore, a co‐crystal structure of the initial hit with the enzyme is disclosed, providing valuable information toward the design of new InhA inhibitors for the treatment of MDR/XDR tuberculosis.  相似文献   

7.
The pantothenate biosynthetic pathway is essential for the persistent growth and virulence of Mycobacterium tuberculosis (Mtb) and one of the enzymes in the pathway, pantothenate synthetase (PS, EC: 6.3.2.1), encoded by the panC gene, has become an appropriate target for new therapeutics to treat tuberculosis. Herein, we report nanomolar thiazolidine inhibitors of Mtb PS developed by a rational inhibitor design approach. The thiazolidine compounds were discovered by using energy‐based pharmacophore modelling and subsequent in vitro screening, which resulted in compounds with a half maximal inhibitory concentration (IC50) value of (1.12±0.12) μM . These compounds were subsequently optimised by a combination of modelling and synthetic chemistry. Hit expansion of the lead by chemical synthesis led to an improved inhibitor with an IC50 value of 350 nM and an Mtb minimum inhibitory concentration (MIC) of 1.55 μM . Some of these compounds also showed good activity against dormant Mtb cells.  相似文献   

8.
The emergence of extensively drug‐resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast‐track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti‐arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ‐like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate‐binding tunnel of Mtb‐AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2‐(2‐5‐methylcarboxyphenylamino)‐3‐methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6‐bis‐(2‐carboxyphenylamino)benzoate, is a 40‐fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure‐based drug design.  相似文献   

9.
In an ongoing effort to discover an effective, topical, dual‐function, non‐surfactant contraceptive vaginal microbicide, a novel series of 2,2′‐disulfanediylbis(3‐(substituted‐1‐yl)propane‐2,1‐diyl) disubstituted‐1‐carbodithioates were designed by using a bioisosterism approach. Thirty‐three compounds were synthesized, and interestingly, most demonstrated multiple activities: they were found to be spermicidal at a minimal effective concentration of 1–0.001 %, trichomonacidal against drug‐susceptible and resistant Trichomonas strains at minimal inhibitory concentration (MIC) ranges of 10.81–377.64 and 10.81–754.14 μM , respectively, and fungicidal at MIC 7.93–86.50 μM . These compounds were also found to be non‐cytotoxic to human cervical (HeLa) epithelial cells and vaginal microflora (Lactobacilli) in vitro. The most promising compound, 2,2′‐disulfanediylbis(3‐(pyrrolidin‐1‐yl)propane‐2,1‐diyl)dipyrrolidine‐1‐carbodithioate ( 5 ), exhibited spermicidal activity 15‐fold higher than that of the marketed spermicide Nonoxynol‐9 (N‐9) and also demonstrated microbicidal potency. To identify common structural features required for spermicidal activity, a 3D‐QSAR analysis was carried out, as well as in vivo efficacy studies and fluorescent labeling studies to determine the biological targets of compound 5 .  相似文献   

10.
Overcoming resistance : Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross‐resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan‐based inhibitors is reported, including their promising efficacy against INH‐resistant strains of M. tuberculosis.

  相似文献   


11.
A series of 38 2‐naphthyl‐substituted diarylpyrimidine (DAPY) analogues, characterized by various substitution patterns on the pyrimidine and naphthalene rings, was synthesized in a straightforward fashion by means of parallel synthesis and evaluated as inhibitors of the HIV‐1 wild‐type and double mutant (K103N+Y181C) strains. Most of the compounds displayed strong activity against wild‐type HIV‐1. The most active compound, with a cyano group at position C6 on the naphthalene ring, exhibited activity against wild‐type HIV‐1 with an EC50 value of 0.002 μM and against the double mutant strain with an EC50 value of 0.24 μM ; the selectivity index (SI) against wild‐type is >180 000, the highest SI value among DAPY analogues. The structure–activity relationship (SAR) of the newly synthesized DAPYs is presented herein.  相似文献   

12.
ATP‐competitive inhibitors of DNA gyrase and topoisomerase IV are among the most interesting classes of antibacterial drugs that are unrepresented in the antibacterial pipeline. We developed 32 new N‐phenylpyrrolamides and evaluated them against DNA gyrase and topoisomerase IV from E. coli and Staphylococcus aureus. Antibacterial activities were studied against Gram‐positive and Gram‐negative bacterial strains. The most potent compound displayed an IC50 of 47 nm against E. coli DNA gyrase, and a minimum inhibitory concentration (MIC) of 12.5 μm against the Gram‐positive Enterococcus faecalis. Some compounds displayed good antibacterial activities against an efflux‐pump‐deficient E. coli strain (MIC=6.25 μm ) and against wild‐type E. coli in the presence of efflux pump inhibitor PAβN (MIC=3.13 μm ). Here we describe new findings regarding the structure–activity relationships of N‐phenylpyrrolamide DNA gyrase B inhibitors and investigate the factors that are important for the antibacterial activity of this class of compounds.  相似文献   

13.
Five novel N‐substituted demethylvancomycin derivatives were rationally designed and synthesized by using a structure‐based approach. The in vitro antibacterial activities against methicillin‐resistant Staphylococcus aureus (MRSA), gentamicin‐resistant Enterococcus faecalis (GRE), methicillin‐resistant Streptococcus pneumoniae (MRS), and vancomycin‐resistant Enterococcus faecalis (VRE) were evaluated. One of the compounds, N‐(6‐phenylheptyl)demethylvancomycin ( 12 a ), was found to exhibit more potent antibacterial activity than vancomycin and demethylvancomycin. Compound 12 a was also found to be ~18‐fold more efficacious than vancomycin against MRSA; however, the two compounds were found to have similar efficacy against MRS. Furthermore, compound 12 a exhibited a favorable pharmacokinetic profile with a half‐life of 5.11±0.52 h, which is longer than that of vancomycin (4.3±1.9 h). These results suggest that 12 a is a promising antibacterial drug candidate for further preclinical evaluation.  相似文献   

14.
Thirty two analogues of phencyclidine were synthesised and tested as inhibitors of trypanothione reductase (TryR), a potential drug target in trypanosome and leishmania parasites. The lead compound BTCP ( 1 , 1‐(1‐benzo[b]thiophen‐2‐yl‐cyclohexyl) piperidine) was found to be a competitive inhibitor of the enzyme (Ki=1 μM ) and biologically active against bloodstream T. brucei (EC50=10 μM ), but with poor selectivity against mammalian MRC5 cells (EC50=29 μM ). Analogues with improved enzymatic and biological activity were obtained. The structure–activity relationships of this novel series are discussed.  相似文献   

15.
Tuberculosis (TB) remains a pressing unmet medical need, particularly with the emergence of multidrug‐resistant and extensively drug‐resistant tuberculosis. Here, a series of 1,4‐substituted‐1,2,3‐triazoles have been synthesized and evaluated as potential antitubercular agents. These compounds were assembled via click chemistry in high crude purity and in moderate to high yield. Of the compounds tested, 12 compounds showed promising antitubercular activity with six possessing minimum inhibitory concentration (MIC) values <10 μg mL?1, and total selectivity for Mycobacterium tuberculosis (Mtb) growth inhibition. A second set of 21 compounds bearing variations on ring C were synthesized and evaluated. This second library gave an additional six compounds displaying MIC values ≤10 μg mL?1 and total selectivity for Mtb growth inhibition. These compounds serve as an excellent starting point for further development of antitubercular therapies.  相似文献   

16.
A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase (GR), was optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid molecular dynamics–docking and scoring scheme, FERM‐SMD, was used to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high‐ and low‐affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency was increased approximately fourfold against GR from the model organism, B. subtilis. Lead derivatives show two‐ to fourfold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis over E. coli and S. aureus depends on the substituent added to the parent scaffold. Finally, insight was gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The outcome of this study is a novel small‐molecule inhibitor of GR with the following characteristics: Ki=2.5 μM , LE=0.45 kcal mol?1 atom?1, LiPE=6.0, MIC50=260 μg mL?1 against B. subtilis, EC50, lysis=520 μg mL?1 against B. subtilis.  相似文献   

17.
18.
Monoamine oxidase (MAO) is a useful target in the treatment of neurodegenerative diseases and depressive disorders. Both isoforms, MAO‐A and MAO‐B, are known to play critical roles in disease progression, and as such, the identification of novel, potent and selective inhibitors is an important research goal. Here, two series of 3‐phenylcoumarin derivatives were synthesized and evaluated against MAO‐A and MAO‐B. Most of the compounds tested acted preferentially on MAO‐B, with IC50 values in the micromolar to nanomolar range. Only 6‐chloro‐4‐hydroxy‐3‐(2’‐hydroxyphenyl)coumarin exhibited activity against the MAO‐A isoform, while still retaining good selectivity for MAO‐B. 6‐Chloro‐3‐phenylcoumarins unsubstituted at the 4 position were found to be more active as MAO‐B inhibitors than the corresponding 4‐hydroxylated coumarins. For 4‐unsubstituted coumarins, meta and para positions on the 3‐phenyl ring seem to be the most favorable for substitution. Molecular docking simulations were used to explain the observed hMAO‐B structure–activity relationships for this type of compound. 6‐Chloro‐3‐(3’‐methoxyphenyl)coumarin was the most active compound identified (IC50=0.001 μM ) and is several times more potent and selective than the reference compound, R‐(?)‐deprenyl hydrochloride. This compound represents a novel tool for the further investigation of the therapeutic potential of MAO‐B inhibitors.  相似文献   

19.
Three different series of new 5‐nitroindazole derivatives—1‐(ω‐aminoalkyl)‐2‐benzylindazolin‐3‐ones (series A ; ten compounds), 3‐(ω‐aminoalkoxy)‐2‐benzylindazoles (series B ; four compounds) and 3‐alkylamino‐2‐benzylindazoles (series C ; five compounds)—have been synthesized and evaluated against the protozoan parasites Trypanosoma cruzi, Leishmania amazonensis, and Trichomonas vaginalis: etiological agents of Chagas disease, cutaneous leishmaniasis, and trichomoniasis, respectively. Many indazoles of series A , B , and C were efficient against T. cruzi. Some compounds in series A , after successfully passing the preliminary screening for epimastigotes, exhibited activity values against amastigotes of several T. cruzi strains that were better than or similar to those shown by the reference drug benznidazole and displayed low nonspecific toxicity against mammalian cells. On the other hand, preliminary studies against promastigotes of L. amazonensis showed high leishmanicidal activity for some derivatives of series A and C . With regard to activity against T. vaginalis, some indazoles of series B and C were rather efficient against trophozoites of a metronidazole‐sensitive isolate and showed low nonspecific toxicities toward Vero cell cultures. Additionally, some of these compounds displayed similar activity against metronidazole‐sensitive and resistant isolates, showing the absence of cross‐resistance between these derivatives and the reference drug.  相似文献   

20.
To further explore the basic structural motifs (3S,6S)‐6‐benzhydryl‐N‐benzyltetrahydro‐2H‐pyran‐3‐amine and (2S,4R,5R)‐2‐benzhydryl‐5‐(benzylamino)tetrahydro‐2H‐pyran‐4‐ol, developed by our research group, for monoamine transport inhibition, we designed and synthesized various structurally altered analogues. The new compounds were tested for their affinities for the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain by measuring their capacity to inhibit the uptake of [3H]DA, [3H]5‐HT, and [3H]NE, respectively. Our results point to novel compounds with a TUI, DNRI, SNRI, or SSRI profile. Among the TUIs, compound 2 g exhibited a balanced potency for all three monoamine transporters (Ki: 60, 79, and 70.3 nM for DAT, SERT, and NET, respectively). In the rat forced swim test, compound 2 g produced a significant decrease in immobility in drug‐treated rats relative to vehicle, indicating a potential antidepressant property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号