首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urinary tract infections (UTIs) are caused primarily by uropathogenic Escherichia coli (UPEC), which encode filamentous surface‐adhesive organelles called type 1 pili. FimH is located at the tips of these pili. The initial attachment of UPEC to host cells is mediated by the interaction of the carbohydrate recognition domain (CRD) of FimH with oligomannosides on urothelial cells. Blocking these lectins with carbohydrates or analogues thereof prevents bacterial adhesion to host cells and therefore offers a potential therapeutic approach for prevention and/or treatment of UTIs. Although numerous FimH antagonists have been developed so far, few of them meet the requirement for clinical application due to poor pharmacokinetics. Additionally, the binding mode of an antagonist to the CRD of FimH can switch from an in‐docking mode to an out‐docking mode, depending on the structure of the antagonist. In this communication, biphenyl α‐D ‐mannosides were modified to improve their binding affinity, to explore their binding mode, and to optimize their pharmacokinetic properties. The inhibitory potential of the FimH antagonists was measured in a cell‐free competitive binding assay, a cell‐based flow cytometry assay, and by isothermal titration calorimetry. Furthermore, pharmacokinetic properties such as log D, solubility, and membrane permeation were analyzed. As a result, a structure–activity and structure–property relationships were established for a series of biphenyl α‐D ‐mannosides.  相似文献   

2.
Uropathogenic E. coli (UPEC) employ the mannose‐binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half‐life in vivo. In a rational design strategy, we obtained an X‐ray structure of lead mannosides and then designed mannosides with improved drug‐like properties. We show that cyclizing the carboxamide onto the biphenyl B‐ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2‐methyl‐4‐(1‐oxo‐1,2‐dihydroisoquinolin‐7‐yl)phenyl α‐d ‐mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N‐Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22 , as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria‐mediated hemagglutination and prevent biofilm formation by UPEC with single‐digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date.  相似文献   

3.
Blocking the adherence of bacteria to cells is an attractive complementary approach to current antibiotic treatments, which are faced with increasing resistance. This strategy has been particularly studied in the context of urinary tract infections (UTIs), in which the adhesion of pathogenic Escherichia coli strains to uroepithelial cells is prevented by blocking the FimH adhesin expressed at the tips of bacteria organelles called fimbriae. Recently, we extended the antiadhesive concept, showing that potent FimH antagonists can block the attachment of adherent‐invasive E. coli (AIEC) colonizing the intestinal mucosa of patients with Crohn′s disease (CD). In this work, we designed a small library of analogues of heptyl mannoside (HM), a previously identified nanomolar FimH inhibitor, but one that displays poor antiadhesive effects in vivo. The anomeric oxygen atom was replaced by a sulfur or a methylene group to prevent hydrolysis by intestinal glycosidases, and chemical groups were attached at the end of the alkyl tail. Importantly, a lead compound was shown to reduce AIEC levels in the feces and in the colonic and ileal mucosa after oral administration (10 mg kg?1) in a transgenic mouse model of CD. The compound showed a low bioavailability, preferable in this instance, thus suggesting the possibility of setting up an innovative antiadhesive therapy, based on the water‐soluble and non‐cytotoxic FimH antagonists developed here, for the CD subpopulation in which AIEC plays a key role.  相似文献   

4.
A previously proposed predictive format for elastic, storage and loss moduli is extended for the time‐dependent compliance Db(t) of polymer blends. The format employs a two‐parameter equivalent box model (EBM) and the data on the phase continuity of components in blends obtained by using modified general equations of the percolation theory. As input data, the compliances D1(t) and D2(t) and the critical volume fractions V1cr and V2cr (delimiting the interval of phase co‐continuity in blends) of components are sufficient. To describe the effect of time on D1(t), D2(t) and Db(t) within the linear stress‐strain region, a routinely used empirical equation was found suitable. Applicability of the proposed format is demonstrated on rubbertoughened polypropylene/poly(styrene‐co‐acrylonitrile) blends consisting of components with markedly different viscoelastic properties. The proposed predictive format fits fairly well the creep behavior of blends over the interval 0.1‐10,000 minutes.  相似文献   

5.
Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose‐specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X‐ray co‐crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH–antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X‐ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X‐ray and NMR experiments the results provide a mechanism for the often‐observed enthalpy–entropy compensation of FimH antagonists that plays a role in fine‐tuning of the interaction.  相似文献   

6.
Antimicrobial resistance has become a serious concern for the treatment of urinary tract infections. In this context, an anti-adhesive approach targeting FimH, a bacterial lectin enabling the attachment of E. coli to host cells, has attracted considerable interest. FimH can adopt a low/medium-affinity state in the absence and a high-affinity state in the presence of shear forces. Until recently, mostly the high-affinity state has been investigated, despite the fact that a therapeutic antagonist should bind predominantly to the low-affinity state. In this communication, we demonstrate that fluorination of biphenyl α-d -mannosides leads to compounds with perfect π–π stacking interactions with the tyrosine gate of FimH, yielding low nanomolar to sub-nanomolar KD values for the low- and high-affinity states, respectively. The face-to-face alignment of the perfluorinated biphenyl group of FimH ligands and Tyr48 was confirmed by crystal structures as well as 1H,15N-HSQC NMR analysis. Finally, fluorination improves pharmacokinetic parameters predictive for oral availability.  相似文献   

7.
Animal models suggest that the chemokine ligand 2/CC‐chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clinical trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure–kinetics relationships (SKRs). Herein we report new findings on the structure–affinity relationships (SARs) and SKRs of the reference compound MK‐0483, its diastereomers, and its structural analogues as CCR2 antagonists. The SARs of the 4‐arylpiperidine group suggest that lipophilic hydrogen‐bond‐accepting substituents at the 3‐position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3‐Br: Ki=2.8 nM , residence time (tres)=243 min; 3‐iPr: Ki=3.6 nM , tres=266 min]. Alternatively, additional substituents and further optimization of the molecule, while keeping a carboxylic acid at the 3‐position, can also prolong tres; this was most prominently observed in MK‐0483 (Ki=1.2 nM , tres=724 min) and a close analogue (Ki=7.8 nM ) with a short residence time.  相似文献   

8.
The free‐radical polymerization of vinyl acetate was performed in the presence of deuterated chloroform (CDCl3) as a chain‐transfer agent (telogen) and 2,2′‐azobisisobutyronitrile as an initiator. The effects of the initiator and solvent concentrations (or equivalent monomer concentration) and the reaction temperature on the reaction kinetics were studied by real‐time 1H‐NMR spectroscopy. Data obtained from analysis of the 1H‐NMR spectra were used to calculate some kinetic parameters, such as the initiator decomposition rate constant (kd), kp(f/kt)1/2 ratio (where kp is the average rate constant for propagation, f is the initiator efficiency, and kt is the average rate constant for termination), and transfer constant to CDCl3 (C). The results show that kd and kp(f/kt)1/2 changed significantly with the solvent concentration and reaction temperature, whereas they remained almost constant with the initiator concentration. C changed only with the reaction temperature. Attempts were made to explain the dependence of kp(f/kt)1/2 on the solvent concentration. We concluded from the solvent‐independent C values that the solvent did not have any significant effect on the kp values. As a result, changes in the kp(f/kt)1/2 values with solvent concentration were attributed to the solvent effect on the f and/or kt values. Individual values of f and kt were estimated, and we observed that both the f and kt values were dependent on the solvent (or equivalent monomer) concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A polymer‐based thermal conductive composite has been developed. It is based on a dispersion of micro‐ and nanosized alumina (Al2O3) in the phthalonitrile‐terminated poly (arylene ether nitriles) (PEN‐t‐ph) via solution casting method. The Al2O3 with different particle sizes were functionalized with phthalocyanine (Pc) which was used as coupling agent to improve the compatibility of Al2O3 and PEN‐t‐ph matrix. The content of microsized functionalized Al2O3 (m‐f‐Al2O3) maintained at 30 wt % to form the main thermally conductive path in the composites, and the nanosized functionalized Al2O3 (n‐f‐Al2O3) act as connection role to provide additional channels for the heat flow. The thermal conductivity of the f‐Al2O3/PEN‐t‐ph composites were investigated as a function of n‐f‐Al2O3 loading. Also, a remarkable improvement of the thermal conductivity from 0.206 to 0.467 W/mK was achieved at 30 wt % n‐f‐Al2O3 loading, which is nearly 2.7‐fold higher than that of pure PEN‐t‐ph polymer. Furthermore, the mechanical testing reveals that the tensile strength increased from 99 MPa for pure PEN‐t‐ph to 105 MPa for composites with 30 wt % m‐f‐Al2O3 filler loading. In addition, the PEN‐t‐ph composites possess excellent thermal properties with glass transition temperature (Tg) above 184°C, and initial degradation temperature (Tid) over 490°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41595.  相似文献   

10.
The mixed pincer palladacycles (Me2NCH2(Cl)CCCH2CH2Y‐κNCY)PdCl ( 1 , Y=PPh2; 2 , OPPh2) and (t‐BuSCH2CH2CC(Cl)(o‐NC5H4)‐κSCN)PdCl 3 have been obtained in high yields by chloropalladation of heterosusbstituted alkynes Me2NCH2CCCH2CH2PPh2, Me2NCH2CCCH2CH2OPPh2 and t‐BuSCH2CH2CC(o‐NC5H4), respectively. The molecular structures of 1 and 3 have been ascertained by means of X‐ray diffraction analysis. The catalytic properties of these mixed donor group pincer‐type palladacycles have been evaluated in the arylation of olefins (Heck reaction). The pincer palladacycle 1 is highly active for the coupling of aryl iodides and aryl bromides with n‐butyl acrylate. In contrast it is only moderately active for the coupling of aryl chlorides substituted with electron‐withdrawing groups and inactive for the coupling of electron neutral and electron deactivated aryl chlorides.  相似文献   

11.
The properties of [NiX(PR2CH2C(But)?NN?C(But)CH2PR2)]+ complexes (where X = Br, and R = cyclohexyl (Cy), isopropyl (Pri), tert‐butyl (But), phenyl (Ph); X = Cl or I, and R = cyclohexyl) as catalysts for the polymerisation of ethylene were evaluated with or without the co‐catalysts methylaluminoxane (MAO), diethylaluminium chloride, trimethylaluminium or tri(isobutyl)aluminium. Their efficiency depends on the characteristics of the halogen (X) and the R group of the diphosphine azine ligand. Bromide (X) strongly enhances the catalytic properties of the complexes within the R order Cy > Pri > Ph > But. Temperature, co‐catalyst ratio (Al/Ni) and complex concentration also influence the catalytic activity. The best results were obtained with [NiBr{PCy2CH2C(But)?NN?C(But)CH2PCy2}]Br activated by MAO (A = 25.8 kg (mol Ni)?1 bar?1 h?1). The polymers were characterised using NMR and differential scanning calorimetry as branched polyethylenes, the number of branches increasing with the temperature of polymerisation. The molecular weights of the polymers were estimated using NMR. A proposal for the catalyst active precursor is made on the basis of experimental data and molecular orbital calculations. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
Pb (In1/2Nb1/2) O3‐Pb (Sc1/2Nb1/2) O3‐PbTiO3 (PIN‐PSN‐PT) ternary ceramics with compositions near morphotropic phase boundary (MPB) were fabricated by solid‐state‐sintering process. Dielectric and piezoelectric properties of xPIN‐yPSN‐zPT (x = 0.19, 0.23 and z = 0.365, 0.385) ceramics were investigated as a function of temperature, showing high Tr‐t and Tc on the order of 160 ~ 200°C and 280 ~ 290°C, respectively. The xPIN‐yPSN‐0.365PT (x = 0.19 and 0.23) ceramics do not depolarize at the temperature up to 200°C, showing a better thermal stability when compared to the state‐of‐the‐art relaxor‐PbTiO3 systems. A slight variation (<9%) of kp, kt, and k33 was observed in the temperature range of 25°C‐160°C for xPIN‐yPSN‐0.385PT (x = 0.19 and 0.23) ceramics. Rayleigh analysis was employed to quantify the contribution of domain wall motion to piezoelectric response, where the domain wall contribution was found to increase with composition approaching MPB for PIN‐PSN‐PT system.  相似文献   

13.
By connecting the field‐gradient spin‐echo theory to spin–spin relaxation, we have found that the relationship between the tube‐reptation model and spin–spin relaxation can be represented by G(t) = exp[−(t/T2) n] in which n = 1 and 0.5 for regimes IV and III, respectively. In our experiments, the spin–spin relaxation of linear poly(dimethyl siloxane) (PDMS) agrees with G(t) = exp[−(t/T2)] while that of crosslinked PDMS coincides with G(t) = exp[−(t/T2)0.5]. These results reflect that in the time interval 8–800 ms the dynamics of linear PDMS are in regime IV (governed by reptation motions) and those of the crosslinked PDMS are in regime III (dominated by wriggling motions). The line‐shapes of NMR spectra of crosslinked PDMS are consistent with the Lorentzian rather than the Gaussian model. This can be accounted for by supposing that the PDMS chains between crosslinks have liquid‐like motions even though crosslinked PDMS is a solid. The liquid‐like motions of crosslinked PDMS could be regarded as wriggling motions described by the tube‐reptation model. In addition, the experimental results of diameter distribution, viscosity, NMR image and spin–lattice relaxation are presented in this work. © 2000 Society of Chemical Industry  相似文献   

14.
Migration behaviors of antiozonants depending on temperature were studied using a carbon black‐filled NR vulcanizate containing N‐phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) as antiozonants. The experimental temperatures were 100, 90, 80, and 70°C. Migration rates of them increased steeply by increasing the temperature. The correlation between the migration rates and the temperature was investigated using the half (t1/2)‐ and quarter (t1/4)‐lifetimes of the migrants remaining in the vulcanizate after the migration. The plot of log t versus 1/T was well fitted by the linear equation: The correlation coefficients were higher than 0.995. It was found that the migration behavior and temperature had a correlation of log t = b/T + c, where t and T are the migration time and temperature, b is Ea/R, and c is the constant. The activation energies for the migration were 36.48 and 37.93 kJ/mol for IPPD and HPPD, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1566–1570, 2001  相似文献   

15.
Block copolymerizations of 1‐pentene or 1‐hexene with methyl methacrylate or ε‐caprolactone were explored using [Me2Si(2‐SiMe3‐4‐t‐BuMe2SiC5H2)2YH]2 ( 1 ) or [Me2Si(2‐SiMe3‐4‐t‐BuC5H2)2SmH]2 ( 2 ) as an initiator in toluene or in neat mixtures by the successive additions of monomers in this order. Random copolymerizations of 1‐pentene with 1‐hexene, and random copolymerization of ethylene with 1‐hexene were also performed using 1 as an initiator. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The effect of silane coupling agent, 3‐aminopropyltriethoxysilane (APTES) content on the curing, tensile, swelling, and morphological properties of bentonite (Bt)‐filled ethylene‐propylene‐diene monomer (EPDM) composite was studied. The EPDM composites containing constant Bt composition of 30 phr and various APTES content (0, 1, 3, and 5 phr) were prepared using a laboratory scale two‐roll mill. The result showed that the cure time (t90) and scorch time (tS2) were shortened, whilst, the cure rate index (CRI), the maximum (MH) and minimum (ML) torque increased with increasing APTES content. The experimental results revealed that the optimum APTES content that led to the highest tensile and swelling properties was 3 phr. The presence of APTES greatly improved the dispersion of Bt in EPDM matrix and enhanced the interfacial interaction between EPDM and Bt. Morphological study through scanning electron microscopy revealed the enhanced adhesion between EPDM and Bt in the presence of 3 phr APTES. POLYM. COMPOS., 33:1993–2000, 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

18.
Tetracycline hydrochloride loaded poly (vinyl alcohol)/chitosan/ZrO2 (Tet‐PVA/CS/ZrO2) hybrid nanofibers were fabricated via electrospinning technique. The representative weight ratio of PVA/CS at 3 : 1 was chosen to fabricate drug carrier PVA/CS/ZrO2 nanofibers. The drug carrier showed a decrease in average diameter with the increase of ZrO2 content at given conditions, and the nanofibers were uneven and interspersed with spindle‐shape beads with ZrO2 content at 60 wt % and above. The networks linked by hydrogen and Zr–O–C bonds among PVA, CS, and ZrO2 units resulted in the improving of thermal stability and decreasing of crystallinity of the polymeric matrix. Moreover, the incorporation of ZrO2 endowed the fibers with ultraviolet shielding effect ranged from 200 to 400 nm. The Tet loading dosage had no obvious effect on the morphology and size of the medicated nanofibers at Tet content below 8 wt %, but interspersed with spindle‐shaped beads when Tet content increased to 10 wt %. The Tet‐PVA/CS/ZrO2) nanofibers showed well controlled release and better antimicrobial activity against Staphylococcus aureus, and the Tet release from the medicated nanofibers could be described by Fickian diffusion model for Mt /M< 0.6. These medicated nanofibers may have potential as a suitable material in drug delivery and wound dressing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42506.  相似文献   

19.
The half-lives (t 1/2) of alcohol sex pheromones, 1-alkanols, acetate sex pheromones, and an epoxide (disparlure) were determined on natural rubber septa. Thet 1/2 values for the homologous alcohols from decanol to heptadecanol increased regularly from 2.2 to 1117 days, but thet 1/2 of octadecanol was 609 days. Thet 1/2 values of (Z)7-, (E)7-, and (Z)9-tetradecen-1-ol acetates were 154, 168, and 199 days, respectively, whereas those of five other tested 14-carbon acetates ranged from 310 to 350 days. The dependence oft 1/2 values on chain length and double-bond position is consistent with the hypothesis that molecular size is an important variable affectingt 1/2 values. Also, in accordance with the hypothesis, when aZ-alkenyl compound has a much shortert 1/2 than the corresponding saturated compound, thet 1/2 values of theZ compound and itsE isomer may be quite different. Thus, (E)-9-tetradecen-l-ol acetate had at 1/2 of 331 days. Thet 1/2 of disparlure was 180 days. The effect of thecis-7,8 epoxide group is apparently similar to that of the olefin group in lowering thet 1/2 below the value that would be expected solely on the basis of chain length.This paper reports the results of research only. Mention of a commercial product in this paper does not constitute a recommendation by the U.S. Department of Agriculture.  相似文献   

20.
Copolymerization of ethylene with 1‐octadecene was studied using [η51‐C5Me4‐4‐R1‐6‐R‐C6H2O]TiCl2 [R1 = tBu (1), H (2, 3, 4); R = tBu (1, 2), Me (3), Ph (4)] as catalysts in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]. The effect of the concentration of comonomer in the feed and Al/Ti molar ratio on the catalytic activity and molecular weight of the resultant copolymer were investigated. The substituents on the phenyl ring of the ligand affect considerably both the catalytic activity and comonomer incorporation. The 1 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system exhibits the highest catalytic activity and produces copolymers with the highest molecular weight, while the 2 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system gives copolymers with the highest comonomer incorporation under similar conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号