首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new enantioselective α‐benzylation and α‐allylation of α‐tert‐butoxycarbonyllactones was devloped. α‐Benzylation and α‐allylation of α‐tert‐butoxycarbonylbutyrolactone and α‐tert‐butoxycarbonylvalerolactone under phase‐transfer catalytic conditions (50% cesium hydroxide, toluene, −60 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide (1 mol%) afforded the corresponding α‐substituted α‐tert‐butoxycarbonyllactones in very high chemical yields (up to 99%) and optical yields (up to 99% ee). The synthetic potential of this method has been successfully demonstrated by the asymmetric synthesis of unnatural α‐quaternary homoserines, 3‐alkyl‐3‐carboxypyrrolidine and 3‐alkyl‐3‐carboxypiperidine.  相似文献   

2.
(2S,3aR,7aS)‐Perhydroindolic acid, the key intermediate in the synthesis of trandolapril, and its trans‐isomers, were readily prepared. These proline‐like molecules are unique in that they contain a rigid bicyclic structure, with two hydrogen atoms trans to each other at the bridgehead carbon atoms. These molecules were used successfully as chiral organocatalysts in asymmetric domino Michael addition/cyclization reactions of aldehyde esters with β,γ‐unsaturated α‐keto esters. They proved to have excellent catalytic behavior, allowing for the synthesis of multi‐substituted, enantiomerically enriched hemiacetal esters. Under optimal conditions (using 10 mol% catalyst loading), a series of β,γ‐unsaturated α‐keto esters was examined with up to 99% de, ee and yield, respectively. Additionally, the enantiomerically enriched hemiacetal esters could be readily transformed into their corresponding bioactive pyrano[2,3‐b]pyrans (possessing a multi‐substituted bicyclic backbone).  相似文献   

3.
Inhibition of the biosynthesis of complex N‐glycans in the Golgi apparatus influences progress of tumor growth and metastasis. Golgi α‐mannosidase II (GMII) has become a therapeutic target for drugs with anticancer activities. One critical task for successful application of GMII drugs in medical treatments is to decrease their unwanted co‐inhibition of lysosomal α‐mannosidase (LMan), a weakness of all known potent GMII inhibitors. A series of novel N‐substituted polyhydroxypyrrolidines was synthesized and tested with modeled GH38 α‐mannosidases from Drosophila melanogaster (GMIIb and LManII). The most potent structures inhibited GMIIb (Ki=50–76 μm , as determined by enzyme assays) with a significant selectivity index of IC50(LManII)/IC50(GMIIb) >100. These compounds also showed inhibitory activities in in vitro assays with cancer cell lines (leukemia, IC50=92–200 μm ) and low cytotoxic activities in normal fibroblast cell lines (IC50>200 μm ). In addition, they did not show any significant inhibitory activity toward GH47 Aspergillus saitoiα1,2‐mannosidase. An appropriate stereo configuration of hydroxymethyl and benzyl functional groups on the pyrrolidine ring of the inhibitor may lead to an inhibitor with the required selectivity for the active site of a target α‐mannosidase.  相似文献   

4.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

5.
An unprecedented organocatalytic enantioselective cascade Michael/hemiketalization/retro‐aldol reaction of 2‐[(E)‐2‐nitrovinyl]phenols and 2,4‐dioxo‐4‐arylbutanoates is described. With a bifunctional squaramide catalyst incorporating (1R,2R)‐1,2‐diphenylethane‐1,2‐diamine, the reactions afford products in 75–99% yields with 80–98% ee. This process provides an enantioselective pathway for the synthesis of chiral α‐keto esters, precursors of 3‐arylproline derivatives, δ‐amino α‐keto acids or cyclic α‐keto lactams.

  相似文献   


6.
A highly effective aldol cyclization of α‐isothiocyanato imide to both β,γ‐unsaturated α‐keto esters and aryl‐substituted α‐keto esters has been developed. A chiral N,N′‐dioxide–yttrium triflate complex was used as the catalyst. A series of cyclic thiocarbamates bearing chiral quaternary stereocenters was synthesized in good to high yields, excellent diastereo‐ (up to 25:1 dr) and enantioselectivities (up to 99 % ee). In addition, the reaction could be carried out on a gram‐scale, and other functionalized derivatives are also conveniently transformed. Interestingly, a discrepancy of diastereoselection was observed between the reactions of β,γ‐unsaturated α‐keto esters and aryl‐substituted α‐keto esters. Moreover, a substrate dependency of non‐linear effects was observed in this reaction. On the basis of the experimental results and the absolute configuration of the products, possible catalytic models have been proposed to explain the origin of the asymmetric process.

  相似文献   


7.
A β‐ketoacyl‐ACP reductase (FabG) gene from Bacillus sp. ECU0013 was heterologously overexpressed in Escherichia coli and the encoded protein was purified to homogeneity. The recombinant reductase could reduce a broad spectrum of prochiral ketones including aromatic ketones and keto esters and showed the highest activity in the asymmetric reduction of ethyl 2‐oxo‐4‐phenylbutyrate (OPBE). Using E. coli cells coexpressing both FabG and glucose dehydrogenase (GDH) genes, as much as 620 g⋅L−1 of OPBE was almost stoichiometrically converted to ethyl (S)‐2‐hydroxy‐4‐phenylbutyrate [(S)‐HPBE] with excellent (>99%) enantiomeric excess. More importantly, the process could be performed smoothly without external addition of an expensive cofactor as usually done and could be scaled up very easily. All these positive features demonstrate the applicability of this reductase for the large‐scale production of optically active α‐hydroxy acids/esters.  相似文献   

8.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

9.
The natural product syringolin A (SylA) is a potent proteasome inhibitor with promising anticancer activities. To further investigate its potential as a lead structure, selectivity profiling with cell lysates was performed. At therapeutic concentrations, a rhodamine‐tagged SylA derivative selectively bound to the 20 S proteasome active sites without detectable off‐target labelling. Additional profiling with lysates of wild‐type and bortezomib‐adapted leukaemic cell lines demonstrated the retention of this proteasome target and subsite selectivity as well as potency even in clinically relevant cell lines. Our studies, therefore, propose that further development of SylA might indeed result in an improved small molecule for the treatment of leukaemia.  相似文献   

10.
The enzyme α‐methylacyl CoA racemase (AMACR) is involved in the metabolism of branched‐chain fatty acids and has been identified as a promising therapeutic target for prostate cancer. By using the recently available human AMACR from HEK293 kidney cell cultures, we tested a series of new rationally designed inhibitors to determine the structural requirements in the acyl component. An N‐methylthiocarbamate (Ki=98 nM ), designed to mimic the proposed enzyme‐bound enolate, was found to be the most potent AMACR inhibitor reported to date.  相似文献   

11.
The catalytic asymmetric Claisen rearrangement of 2‐alkoxycarbonyl‐substituted allyl vinyl ethers that contain two stereogenic double bonds is described. A combination of the highly Lewis acidic [Cu{(S,S)‐tert‐Bu‐box}](H2O)2(SbF6)2 complex and molecular sieves served as catalyst and afforded the Claisen rearrangement products, substituted and functionalized α‐keto esters, in high yield with a remarkable diastereo‐ and enantioselectivity. The influence of ligand structure, counterion and allyl vinyl ether double bond configuration on the stereoselectivity of the rearrangement was briefly investigated. We propose an explanation for the rate accelerating effect of the Lewis acid as well as a stereochemical model which serve to explain and predict the stereochemical course of the copper bis(oxazoline) catalyzed Claisen rearrangement.  相似文献   

12.
α‐Alkyl‐β‐hydroxy esters were obtained via dynamic kinetic resolution (DKR) employing purified or crude E. coli overexpressed alcohol dehydrogenases (ADHs). ADH‐A from R. ruber, CPADH from C. parapsilosis and TesADH from T. ethanolicus afforded syn‐(2R,3S) derivatives with very high selectivities for sterically not impeded ketones (‘small‐bulky’ substrates), while ADHs from S. yanoikuyae (SyADH) and Ralstonia sp. (RasADH) could also accept bulkier keto esters (‘bulky‐bulky’ substrates). SyADH also provided preferentially syn‐(2R,3S) isomers and RasADH showed in some cases good selectivity towards the formation of anti‐(2S,3S) derivatives. With anti‐Prelog ADHs such as LBADH from L. brevis or LKADH from L. kefir, syn‐(2S,3R) alcohols were obtained with high conversions and diastereomeric excess in some cases, especially with LBADH. Furthermore, due to the thermodynamically favoured reduction of these substrates, it was possible to employ just a minimal excess of 2‐propanol to obtain the final products with quantitative conversions.  相似文献   

13.
The phase‐transfer‐catalyzed alkylation of α‐alkynylcrotonates was developed as a means to provide 1,4‐enynes deconjugated by an all‐carbon quaternary center. Extension to the asymmetric version using the chiral phase‐transfer catalyst (S)‐ 3 provided the alkylated compounds with up to 87% ee.  相似文献   

14.
The ramipril derivative N,N′‐dioxide 3g ‐indium(III) complex was found to be an efficient catalyst for the allylation of the aromatic α‐keto phosphonates. The corresponding α‐hydroxy phosphonates were obtained with high yields (up to 98 %) and high enantioselectivities (up to 91 % ee). A bifunctional catalyst system was described with an N‐oxide as Lewis base activating tetraallyltin and indium as Lewis acid activating aromatic α‐keto phosphonates. A possible catalytic cycle has been proposed to explain the mechanism of the reaction.  相似文献   

15.
Highly modular chiral amino diol derivatives have been used as organocatalysts in the enantioselective α‐chlorination of cyclic β‐keto esters. Optimization of the catalyst structure and the reaction conditions has allowed the synthesis of optically active α‐chlorinated products with high enantioselectivities (up to 96% ee) using inexpensive commercially available N‐chlorosuccinimide (NCS) as the chlorine source under mild conditions.  相似文献   

16.
α‐Substituted β‐acetyl amides could undergo C C bond cleavage to form α‐keto amides when treated with copper(II) chloride (CuCl2) and boron trifluoride diethyl etherate (BF3⋅OEt2) under an oxygen atmosphere. The yield can be increased by the addition of tert‐butyl hydroperoxide which alone can also effect the reaction. The reaction provides a new protocol for the synthesis of α‐keto amides.

  相似文献   


17.
Various (R)‐ and (S)‐C‐allylglycine derivatives were synthesized by means of an auxiliary controlled diastereoselective aza‐Claisen rearrangement. Starting from (S)‐configured auxiliaries derived from optically active proline, an aza‐Claisen rearrangement enabled us to synthesize α(R)‐configured γ,δ‐unsaturated amides. Since (R)‐allylglycine derivatives could be directly generated by reacting N‐allylproline derivatives and various protected glycine fluorides, the corresponding (S)‐enantiomers were built‐up via an initial α‐chloroacetyl chloride rearrangement and a subsequent chloride azide substitution with complete inversion of the configuration. High diastereoselectivities were obtained (>15 : 1). The auxiliary could be efficiently removed by organolithium reactions of the amides furnishing α‐amino ketones. Another allyllithium addition allowed us to introduce a second allyl chain with high diastereoselectivity. Final ring closures by means of metatheses using Grubbs' (I) catalyst gave raise to the formation of enantiopure phenanthridines and cyclohexenes displaying defined substitution patterns ready for alkaloid total syntheses.  相似文献   

18.
In recent years, DAPK‐related apoptosis‐inducing protein kinase 2 (DRAK2) has emerged as a promising target for the treatment of a variety of autoimmune diseases and for the prevention of graft rejection after organ transplantation. However, medicinal chemistry optimization campaigns for the discovery of novel small‐molecule inhibitors of DRAK2 have not yet been published. Screening of a proprietary compound library led to the discovery of a benzothiophene analogue that displays an affinity constant (Kd) value of 0.25 μM . Variation of the core scaffold and of the substitution pattern afforded a series of 5‐arylthieno[2,3‐b]pyridines with strong binding affinity (Kd=0.008 μM for the most potent representative). These compounds also show promising activity in a functional biochemical DRAK2 enzyme assay, with an IC50 value of 0.029 μM for the most potent congener. Selectivity profiling of the most potent compounds revealed that they lack selectivity within the DAPK family of kinases. However, one of the less potent analogues is a selective ligand for DRAK2 and can be used as starting point for the synthesis of selective and potent DRAK2 inhibitors.  相似文献   

19.
A series of 1,5‐dideoxy‐1,5‐imino‐(l )‐ribitol (DIR) derivatives carrying alkyl or functionalized alkyl groups were prepared and investigated as glycosidase inhibitors. These compounds were designed as simplified 4‐epi‐isofagomine (4‐epi‐IFG) mimics and were expected to behave as selective inhibitors of β‐galactosidases. All compounds were indeed found to be highly selective for β‐galactosidases versus α‐glycosidases, as they generally did not inhibit coffee bean α‐galactosidase or other α‐glycosidases. Some compounds were also found to be inhibitors of almond β‐glucosidase. The N‐alkyl DIR derivatives were only modest inhibitors of bovine β‐galactosidase, with IC50 values in the 30–700 μm range. Likewise, imino‐l ‐ribitol substituted at the C1 position was found to be a weak inhibitor of this enzyme. In contrast, alkyl substitution at C5 resulted in enhanced β‐galactosidase inhibitory activity by a factor of up to 1000, with at least six carbon atoms in the alkyl substituent. Remarkably, the ‘pseudo‐anomeric’ configuration in this series does not appear to play a role. Human lysosomal β‐galactosidase from leukocyte lysate was, however, poorly inhibited by all iminoribitol derivatives tested (IC50 values in the 100 μm range), while 4‐epi‐IFG was a good inhibitor of this enzyme. Two compounds were evaluated as pharmacological chaperones for a GM1‐gangliosidosis cell line (R301Q mutation) and were found to enhance the mutant enzyme activity by factors up to 2.7‐fold.  相似文献   

20.
Thirty two analogues of phencyclidine were synthesised and tested as inhibitors of trypanothione reductase (TryR), a potential drug target in trypanosome and leishmania parasites. The lead compound BTCP ( 1 , 1‐(1‐benzo[b]thiophen‐2‐yl‐cyclohexyl) piperidine) was found to be a competitive inhibitor of the enzyme (Ki=1 μM ) and biologically active against bloodstream T. brucei (EC50=10 μM ), but with poor selectivity against mammalian MRC5 cells (EC50=29 μM ). Analogues with improved enzymatic and biological activity were obtained. The structure–activity relationships of this novel series are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号