共查询到12条相似文献,搜索用时 72 毫秒
1.
2.
采用计算流体动力学(CFD)程序CFX4.4对加热上升管内过冷流动沸腾工况下气水两相流动局部两相流参数(空泡份额和汽泡尺寸)进行了数值模拟。对数值差分方法、相关模型(界面力和气泡诱导的紊流)和汽泡尺寸进行了敏感性分析。空泡份额分布计算结果与实验结果比较表明,在低空泡份额工况下,两者符合较好,在高空泡份额工况下两者存在一定偏差,并且气相速度和汽泡尺寸的计算结果不理想。计算结果与实验结果之间的差异说明程序模型对于加热上升管内过冷流动沸腾模拟并不完善,建立更为合理的汽泡尺寸模型,考虑汽泡的合并和撕裂是必要的。 相似文献
3.
4.
5.
Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model. 相似文献
6.
The process of bubble growth on heating wall in subcooled boiling includes the micro-layer evaporation on heating wall and the bubble top coagulation when the bubbles grow to a certain size and emerge into the subcooled mainstream fluid. Based on this consideration, a model for the single bubble growth of subcooled flow boiling in vertical narrow rectangular channel was proposed.Compared with experimental results, the error of the simulation results using the proposed model is less than ±25%. The simulation results indicated that as the wall superheat increases, the bubble growth gets faster, with the subcooled degree of mainstream increases, the bubble growth in later stage would be slowed, with the contact angle increases, the contact radius of the bubble bottom and the wall tension would be strengthened, resulting in faster bubble growth to make the bubble to be flat and more easily exposed to the mainstream. The velocity of mainstream has no significant effects on bubble growth rate. 相似文献
7.
分析了液氮流动沸腾过程中气液两相间动量、能量以及质量的传输规律,建立了相应的理论模型,新模型重点修正了界面面积浓度和气泡挣脱直径的计算式;采用新建立的理论模型作为封闭方程对CFX-4.3中内建的双流体模型进行了修正,并采用修正后的双流体模型模拟了液氮在垂直圆管内的流动沸腾过程.数值模拟的结果与文献中的实验数据吻合较好,证明了本文所建模型的合理性.通过数值模拟发现,两相流参数分布的不均匀性对液氮流动沸腾过程中的热质传输特性有重要影响. 相似文献
8.
9.
10.
11.
A mode based on an additive mechanism of heat transfer is proposed for forced convection subcooled boiling of binary mixtures. The contributing modes of heat transfer are: (i) the heat transferred as latent heat by the rising bubbles, (ii) the heat transferred as the heat contained in the superheated thermal layer that is removed from the surface in the wake of the rising bubbles and (iii) the single phase forced convection heat transfer from the heating surface not influenced by the bubbles. Experimental data from the literature on binary systems show good agreement with the model, validating the postulated mechanism. 相似文献
12.
研究气泡浮升直径对揭示过冷流动沸腾的传热机理至关重要。为探究流动工况对气泡浮升直径的影响机制,针对发动机缸盖沸腾区域的冷却通道设计了一个水动力相似的矩形实验通道,搭建了过冷流动沸腾可视化实验循环系统。基于该可视化实验系统,研究了系统压力、壁面过热度、流速以及液体过冷度对气泡浮升直径的影响,发现气泡浮升直径随着系统压力、流速以及过冷度的增大而变小,随着壁面过热度的增大而增大。建立了气泡在浮升时刻的力平衡模型,该力平衡模型的预测值与实验值的平均相对误差为12.25%。为了便于工程应用,基于气泡浮升直径的力平衡模型,建立了气泡浮升直径的经验模型,该经验模型的预测值与实验值的平均相对误差为6.80%。 相似文献