首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To compare the reliability of clinical seizure lateralization in temporal lobe epilepsy patients with unitemporal and bitemporal independent interictal spikes and unilateral hippocampal atrophy or sclerosis (HA/HS) on MRI scan. PATIENTS AND METHODS: We studied 11 patients with unitemporal and 10 patients with bitemporal interictal spikes. We calculated a spike ratio by dividing the number of spikes ipsilateral to the side of HA/HS by those occurring contralaterally. RESULTS: Clinical seizure lateralization was correct, i.e., ipsilateral to the side of HA/HS, significantly more often in the unitemporal group. Spike ratios were significantly higher in seizures that were lateralized correctly as compared with both incorrectly and nonlateralized seizures. Within the individual patients, a significant positive correlation between spike ratios and the proportion of correctly lateralized seizures was found. We identified three categories of symptoms according to lateralization accuracy. Category 1 symptoms (version, postictal paresis, and early ictal vomiting/retching) lateralized to the side of HA/HS in 100% of patients in the uni- and bitemporal groups. Category 2 symptoms (dystonic posturing, mouth deviation, postictal dysnomia/dysphasia, and ictal speech) provided a 100% correct lateralization in the unitemporal but not in the bitemporal patients. Category 3 symptoms (nonversive early head turning and unilateral upper extremity automatisms) yielded erroneous lateralization in both patient groups. CONCLUSIONS: We conclude that reliable clinical seizure lateralization in mesial temporal lobe epilepsy can only be achieved in patients with unitemporal interictal spikes, whereas clinical lateralization in patients with bitemporal spikes must be viewed cautiously.  相似文献   

2.
Interictal brain SPECT is useful for the localization of a seizure focus. Concomitant hypoperfusion of the ipsilateral thalamus on interictal SPECT has been noted for temporal lobe epilepsy. In this study, we aimed to evaluate the prevalence of thalamic hypoperfusion ipsilateral to temporal hypoperfusion (ipsilateral thalamic hypoperfusion) and to assess the usefulness of this finding for the lateralization of epileptic foci on interictal SPECT for temporal lobe epilepsy patients. METHODS: Forty-six patients with refractory temporal lobe epilepsy underwent interictal brain SPECT after intravenous injection of 555-740 MBq of 99mTc-ECD. Perfusion impairments in the brain, especially the temporal lobe and thalamus, were evaluated. The localization of seizure foci was determined in conjunction with scalp, ictal and cortical electroencephalography, MRI and clinical outcomes. Ictal SPECT was performed for 5 of the 12 patients. RESULTS: Concomitant decreased perfusion in both the temporal lobe and the ipsilateral thalamus was observed for 12 (26%) of 46 temporal lobe epilepsy patients on interictal brain SPECT. Seven patients showed hypoperfusion in the left temporal lobe and ipsilateral thalamus. Five patients showed hypoperfusion in the right temporal lobe and ipsilateral thalamus. In addition, hypoperfusion in the ipsilateral basal ganglia (ten patients) or contralateral cerebellum (four patients) was observed. CONCLUSION: Ipsilateral thalamic hypoperfusion is not uncommon in temporal lobe epilepsy. The exact mechanism causing ipsilateral thalamic hypoperfusion is uncertain; however, corticothalamic diaschisis may be an important factor. This finding may aid in the lateralization of seizure foci on interictal brain SPECT.  相似文献   

3.
Single photon emission tomography (SPECT) was performed in 27 patients with refractory complex partial seizures from the temporal lobes due to mesial temporal sclerosis. Independent blinded observers assessed the 28 interictal studies and 9 ictal/postictal studies. Visual analysis of interictal studies detected hypoperfusion in 22, ipsilateral to the epileptogenic zone in 19 (67%) and contralateral in 3 (10.7%). Quantified temporal lobe asymmetry, greater than a previously derived normal range, correctly identified the epileptogenic zone in 16 (61.5%) with false lateralization in 4 (15.3%). In all 9 cases in which they were performed, ictal/postictal studies showed hyperperfusion at the region of epileptic focus. In 3 patients with complex partial seizures followed by symmetric generalized tonic-clonic seizures, hyperperfusion restricted to the temporal lobe was demonstrated. In 5 of these patients the interical studies were unable to demonstrate localized changes. There were no significant correlations between SPECT findings and clinical parameters or EEG slowing in the temporal lobes.  相似文献   

4.
PURPOSE: Magnetic resonance imaging, interictal scalp EEG, and ictal scalp EEG each have been shown to localize the primary epileptic region in most patients with mesial-basal temporal lobe epilepsy (MBTLE), but the association of surgical outcome and pathology with each combination of these test results is not known. METHODS: We reviewed the MRI, interictal scalp EEG, and ictal scalp EEG results of 90 consecutive patients with MBTLE. Twelve patients were excluded from the analysis because inconclusive bitemporal intracranial EEG results precluded anterior temporal lobectomy (ATL); none had concordant MRI and interictal scalp EEG results. We compared all combinations of presurgical MRI, interictal EEG, and ictal EEG results to seizure outcome and tissue pathology in the 78 patients who underwent an ATL. RESULTS: Forty-eight (61%) patients had concordant lateralized MRI and interictal EEG temporal lobe abnormalities, with no discordant ictal EEG results; 77% of these patients were seizure-free after ATL. Concordance of MRI and interictal EEG abnormalities correlated with seizure cessation (p < 0.05), compared to all combinations with discordant or nonlateralizing MRI and interictal EEG results. Mesial temporal sclerosis (MTS) was confirmed pathologically in about 80% of both groups (p = 0.5). Outcome in patients with concordant MRI and ictal EEG with nonlateralizing interictal EEG was significantly worse than combinations with concordant MRI and interictal EEG (p < 0.02). CONCLUSIONS: Compared to other combinations of test results, concordance of MRI and interictal EEG is most closely associated with surgical outcome in MBTLE. However, most selected patients have pathologic confirmation of MTS regardless of test results or outcome. This information may be useful for planning the presurgical evaluation of patients with medically intractable MBTLE.  相似文献   

5.
Identification of epileptogenic foci in patients with refractory epilepsy remains a significant diagnostic challenge. Magnetic resonance imaging studies frequently fail to reveal an anatomic origin for the seizures, and scalp electroencephalography is often limited to identification of the involved hemisphere. Functional imaging modalities such as PET and SPECT are more promising tools for this application because they reflect the functional pathology associated with the seizure. These changes are more pronounced ictally, but until recently, no radiopharmaceutical was available that could be used routinely for ictal SPECT. The present study was therefore undertaken to determine whether 99mTc-bicisate could be used in ictal SPECT in pediatric patients with refractory epilepsy, to compare the patterns of ictal and interictal blood flow in these patients and to compare the localization information provided by ictal SPECT with that available from other techniques. METHODS: Technetium-99m-bicisate/SPECT was compared prospectively with scalp EEG for its ability to identify a possible seizure focus in pediatric patients with refractory epilepsy. Ictal and interictal SPECT studies were performed in 10 patients (3-19 yr old, mean age 10.9 +/- 4.3 yr; 7 female, 3 male) in whom MRI scans revealed no lesions that might be responsible for the seizures. RESULTS: Ictal SPECT was performed in all patients, and all ictal studies revealed focal perfusion abnormalities. By comparison, four of the interictal SPECT studies showed regional hypoperfusion that corresponded to the regions of hyperperfusion in the ictal studies, and three showed regional hyperperfusion corresponding to the hyperperfused regions in the ictal studies. Three interictal studies revealed no abnormal perfusion. Scalp EEG provided localization information in five patients. CONCLUSION: These initial results suggest that ictal SPECT with 99mTc-bicisate is a more promising tool for the identification of epileptogenic foci than interictal SPECT or scalp EEG in patients without focal abnormalities on MRI.  相似文献   

6.
PURPOSE: Ictal single photon emission computed tomography (SPECT) has been evaluated as an adjunctive localizing technique in temporal lobe epilepsies and, to a lesser degree, in some extratemporal epilepsies. The purpose of this study was to determine whether occipital lobe seizures are associated with distinctive ictal cerebral blood perfusion (rCP) patterns. METHODS: SPECT was used with the tracer 99mTc HMPAO to image ictal rCP in 6 patients in whom clinical, EEG, and imaging data indicated occipital lobe seizures. RESULTS: Two patterns of rCP were seen. Four patients had hyperperfusion that was restricted to the occipital lobe, and two patients had hyperperfusion of the occipital lobe and the ipsilateral mesial temporal lobe, with hypoperfusion of the lateral temporal lobe. The latter 2 patients had clinical and surface EEG evidence of temporal lobe involvement in the seizure discharge. CONCLUSIONS: Ictal rCP patterns in occipital lobe seizures are distinct from those in temporal lobe seizures and may vary according to whether or not ipsilateral temporal lobe structures are involved in the ictal discharge.  相似文献   

7.
Peri-ictal SPECT provides unique information on the dynamic changes in regional cerebral blood flow (rCBF) that occur during seizure evolution and, thus, could be useful in clarifying the poorly understood interplay of the interictal and ictal states in human focal epilepsy. The regional hyperperfusion observed on ictal SPECT is generally believed to be a consequence of electrical seizure activity. However, recent studies using invasive long-term cortical CBF monitoring have demonstrated that rCBF changes occur up to 20 min prior to ictal electroencephalography (EEG) onset. Because of apparent technical difficulties, no preictal SPECT studies have been reported so far. Therefore, we present our results on two patients with temporal lobe epilepsy in whom preictal SPECT scans were performed fortuitously under continuous video-EEG monitoring control. METHODS: Technetium-99m-hexamethyl propyleneamine oxime was injected 11 min (Patient 1) and 12 min (Patient 2) before clinical and EEG seizure onset, as documented from simultaneous video-EEG monitoring in two patients with temporal lobe epilepsy. We obtained accurate anatomical reference of CBF changes visible on SPECT by a special coregistration technique of MRI and SPECT. RESULTS: Whereas interictal SPECT showed a hypoperfusion of the temporal lobe ipsilateral to the seizure focus, on preictal SPECT, a significant increase in rCBF in the epileptic temporal lobe could be observed. These rCBF changes were not accompanied by any significant changes of the ongoing EEG. CONCLUSION: Our study provides evidence that rCBF is increased in the epileptic temporal lobe several minutes before EEG seizure onset. Thus, rCBF changes observed on peri-ictal SPECT scan cannot be considered a mere consequence of EEG seizure activity but may rather reflect a change in neuronal activity precipitating the transition from the interictal to the ictal state.  相似文献   

8.
Because interictal temporal lobe delta activity (TLDA) has been described in 30 to 90% of patients with temporal lobe epilepsy (TLE) but has not been investigated in patients with extratemporal epilepsy, we sought to determine the localizing significance of TLDA. We compared the presurgical interictal scalp EEG results of 47 consecutive patients who received extratemporal resection (40 frontal and 7 parietal-occipital) for intractable epilepsy with 43 consecutive patients who received anterior temporal lobectomy. We defined lateralized TLDA as runs of lower than 4-Hz waveforms that were easily distinguished from the background rhythms and were maximal at electrodes T4, F8, and T6 or T3, F7, and T5. The lateralized TLDA was subcategorized as temporal intermittent rhythmic delta activity (TIRDA) or temporal intermittent polymorphic delta activity (TIPDA). A chi-square test was used to determine the association of the lobe of the epileptogenic zone with TIRDA and TIPDA. We found TIRDA in 12 (28%) and TIPDA in 8 (19%) patients in the temporal lobe group, and TIRDA in 2 (4%) and TIPDA in 9 (19%) patients in the extratemporal group. TIRDA was strongly associated with TLE (p < 0.003), whereas TIPDA occurred at an equal rate in both groups. Similar to anterior temporal epilepsy, lateralized TIPDA is present in up to 20% of patients with extratemporal epilepsy. The presence of TIRDA strongly suggests TLE but may infrequently occur in extratemporal epilepsy. Caution should be used when using lateralized TLDA as a presurgical localizing finding.  相似文献   

9.
Positron emission tomography measured interictal cerebral glucose metabolism with [18F]fluorodeoxyglucose and central benzodiazepine-receptor binding with [11C]flumazenil in 10 mesial temporal lobe epilepsy (TLE) patients and in normal subjects. Eight TLE patients had mesial temporal, lateral temporal, and thalamic hypometabolism ipsilateral to EEG ictal onsets, with additional extratemporal hypometabolism in four. One had unilateral anterior mesial temporal hypometabolism only, and one had normal metabolism. Each patient had decreased benzodiazepine-receptor binding in the ipsilateral anterior mesial temporal region, without neocortical changes. Thus, interictal metabolic dysfunction is variable and usually extensive in TLE, whereas decreased central benzodiazepine-receptor density is more restricted to mesial temporal areas. Metabolic patterns in TLE may reflect diaschisis, while benzodiazepine-receptor changes may reflect localized neuronal and synaptic loss that is specific to the epileptogenic zone. [11C]Flumazenil imaging may be useful in presurgical evaluation of refractory complex partial seizures.  相似文献   

10.
In selecting patients for epilepsy surgery, it is important to distinguish mesial temporal seizures from seizures originating in the posterolateral cortex. We studied ictal cerebral perfusion in five patients with complex partial seizures with clear posterior EEG ictal onsets and clinical seizures semiology suggesting seizure origin in the posterolateral cortex. METHODS: Ictal SPECT was performed during video EEG monitoring using 99mTc-HMPAO as a cerebral perfusion tracer and a rotating gamma camera to acquire images. RESULTS: Three patterns of ictal hyperperfusion were seen: pattern A = temporoparieto-occipital junction extending into the lateral temporal cortex, involving the mesial temporal cortex and basal ganglia to a lesser degree and a small area of hyperperfusion in the contralateral parietal cortex (two patients); pattern B = pattern A but with no hyperperfusion of the mesial temporal cortex (one patient); and pattern C = localized hyperperfusion in the area of the temporoparieto-occipital junction (two patients). CONCLUSION: Our results suggest distinct patterns of ictal perfusion in seizures with posterolateral ictal EEG onsets. Ictal SPECT may be useful in distinguishing such seizures.  相似文献   

11.
OBJECTIVE: To compare the phosphorous metabolite ratios in the mesial temporal lobe of healthy volunteers (n = 20) with the corresponding ratios in patients with temporal lobe epilepsy (n = 30) using 31P NMR spectroscopic imaging and to lateralize the seizure focus in temporal lobe epilepsy patients using various phosphorous metabolite ratios-phosphocreatine to inorganic phosphate (PCr/Pi), PCr to adenosine triphosphate (PCr/gamma-ATP), and (gamma-ATP/Pi)--and to compare with clinical lateralization results. METHODS: All 31P NMR spectroscopic imaging studies were performed on a high-field, 4.1 T, whole-body NMR spectroscopic imaging system using a 31P/1H double-tuned volume coil. RESULTS: We found an average reduction of 15% in the PCr/Pi and gamma-ATP/Pi ratios compared with the corresponding ratios in healthy volunteers in the entire mesial temporal lobe, and more than a 30% reduction in these two ratios in the anterior region of the epileptogenic mesial temporal lobe. These ratios were also reduced significantly in the ipsilateral lobe when compared with their corresponding values in the contralateral lobe. In patients we lateralized the seizure focus, based on these 31P NMR data, and compared the results with the clinical lateralization. The lateralization based on either the PCr/Pi or the gamma-ATP/Pi ratio yielded a correspondence of 70 to 73% with the final clinical lateralization. In the subgroup of patients (n = 9) that needed intracranial EEG for the presurgical lateralization because of inconclusive results from the noninvasive methods, a 78% correspondence was found with the 31P NMR-based lateralization, whereas MRI provided a correspondence of only 33%, and scalp EEG provided a correspondence of only 56%. CONCLUSIONS: These results suggest the utility of adding the 31P NMR method to the group of noninvasive modalities used for presurgical decision making in temporal lobe epilepsy patients.  相似文献   

12.
We compared the findings of scalp electroencephalogram with subdural electrode array (SEA) recordings in 19 patients with refractory frontal lobe epilepsy. Prolonged scalp interictal recordings localized the epileptogenic zone in 12 patients; seven had no interictal sharp waves. The SEAs showed multifocal interictal sharp waves in all patients. Seven patients with localized seizure onset on scalp recording showed extensive ictal onset on the SEA recording. Five patients with lateralized seizure onset to one hemisphere on scalp recording were found to have ictal onset on SEA restricted to a smaller area. Because of the large epileptogenic zone found on SEA recordings, a complete resection was possible in only five (33%) of the 15 patients who had resections. Eight (53%) of the 15 patients benefited from surgery (mean follow-up, 4.6 years). The SEAs also allowed functional localization in most patients. From these data, we suggest that a localizing scalp electroencephalogram in patients with frontal lobe epilepsy may be misleading because SEA recordings show larger epileptogenic zones than anticipated. Furthermore, we postulate that the larger extensive epileptogenic zone may account for the poorer surgical outcome in patients with frontal lobe epilepsy compared with patients with temporal lobe epilepsy.  相似文献   

13.
The goals of this study were to determine (1) the yield of magnetoencephalography (MEG) according to epilepsy type, (2) if MEG spike sources colocalize with focal epileptogenic pathology, and (3) if MEG can identify the epileptogenic zone when scalp ictal electroencephalogram (EEG) or magnetic resonance imaging (MRI) fail to localize it. Twenty-two patients with mesial temporal (10 patients), neocortical temporal (3 patients), and extratemporal lobe epilepsy (9 patients) were studied. A 37-channel biomagnetometer was used for simultaneously recording MEG with EEG. During the typical 2-3-hour MEG recording session, interictal epileptiform activity was observed in 16 of 22 patients. MEG localization yield was greater in patients with neocortical epilepsy (92%) than in those with mesial temporal lobe epilepsy (50%). In 5 of 6 patients with focal epileptogenic pathology, MEG spike sources were colocalized with the lesions. In 11 of 12 patients with nonlocalizing (ambiguous abnormalities or normal) MRI, MEG spike sources were localized in the region of the epileptogenic zone as ultimately defined by all clinical and EEG information (including intracranial EEG). In conclusion, MEG can reliably localize sources of spike discharges in patients with temporal and extratemporal lobe epilepsy. MEG sometimes provides noninvasive localization data that are not otherwise available with MRI or conventional scalp ictal EEG.  相似文献   

14.
Ictal smile     
PURPOSE: Smiling is sometimes manifested during partial seizures. Its value for localizing the epileptogenic focus is not known. We analyzed smiling as an ictal manifestation possibly useful for seizure localization. METHODS: We reviewed patients referred to the video-EEG monitoring unit who presented a smile as part of their critical symptoms. Ictal smile was defined as an accordant expression accompanied by other characteristic epileptic symptoms and ictal EEG activity. RESULTS: Five of 86 patients experienced partial seizures with an ictal smile. We observed smiling during parietal (two patients) and temporal lobe (three patients) seizures. The right hemisphere appeared to be involved with greater frequency. CONCLUSIONS: Ictal smile is an uncommon manifestation of partial seizures involving temporal or parietal lobes, localized mainly on the right hemisphere.  相似文献   

15.
The aim of the preoperative neurophysiological investigations is to identify the primary epileptogenic focus and its relation to functional cortical areas. The investigations include interictal and ictal extracranial (scalp) electroencephalography (EEG) and invasive methods (depth, subdural, foramen ovale electrodes and peroperative electrocorticography). If an epileptic focus is located in the anterior part of the temporal lobe by the use of scalp EEG, this is normally regarded as sufficient for an anterior lobectomy. However, because of poor spatial resolution by scalp EEG, it is difficult to separate mesial from lateral foci, identify the exact extent of posterior temporal or extra-temporal foci, identify the primary focus in patients with bilateral abnormalities and identify cases with minor scalp EEG-changes. As invasive EEG shows higher spatial resolution and gives an opportunity to evaluate functional areas, invasive EEG has significant advantages in these patients. Use of invasive EEG bears a slightly increased risk and discomfort to the patient, but is necessary in the presurgical evaluation of some patients suffering from medically intractable epilepsy.  相似文献   

16.
PURPOSE: In presurgical evaluation of temporal lobe epilepsy (TLE), invasive methods are necessary if results of various noninvasive methods are not sufficiently convergent enough to identify the epileptogenic area accurately. To detect the epileptiform discharges originating specifically from the mesial temporal lobe, we applied the cavernous sinus catheterization technique. METHODS: We placed Seeker Lite-10 guide wire electrodes into bilateral cavernous sinus through the internal jugular veins to record EEG (cavernous sinus EEG) in 6 patients with intractable TLE. Scalp EEG was simultaneously recorded in all 6 and electrocorticogram (ECoG) was also recorded in 4. RESULTS: The cavernous sinus EEG demonstrated clear epileptiform discharges, sometimes even when they were absent on the simultaneously recorded scalp EEG. The epileptiform discharges recorded from the cavernous sinus electrodes were specifically associated with those in the mesial temporal region on ECoG. Ictal EEG pattern originating from mesial temporal lobe was also clearly documented on the cavernous sinus EEG. CONCLUSIONS: This new, semi-invasive method of identifying epileptogenic areas can detect the epileptiform discharges specifically arising from the mesial temporal lobe; it is as useful as or complements the invasive techniques such as foramen ovale or depth recording.  相似文献   

17.
We analyse EEG data from video-EEG recordings of 24 patients, selected among the 63 with "pure" temporal lobe epilepsy. As to interictal EEG features, 62.5% of patients show a less regular background activity on the affected side, in 70% of patients slow waves are either localised or lobar, while in 58% are spikes. Slow waves and spikes have the same well-defined localisation in 37.5% of the patients. Ictal recordings show an initial EEG pattern with high localising value (low-voltage fast activity, flattening or slow waves interruption) in 74/121 seizures (61%). Five out of these 24 patients were operated on without invasive recordings on the basis of ictal video-EEG data. In the 19 patients left, video-EEG ictal informations were used for the planning of the stereo-EEG exploration.  相似文献   

18.
A 21-year-old male presented with temporal lobe epilepsy associated with a venous angioma in the ipsilateral frontal lobe, presenting as intractable complex partial seizures. Neuroimaging showed a cerebral venous angioma in the right dorsolateral and opercular frontal lobe, and atrophy of the right hippocampus. As the ictal electroencephalogram (EEG) obtained with subdural electrodes indicated spike discharges initiating from the right mesial temporal lobe, temporal lobectomy was performed. The patient was seizure-free after the operation. Patients with epilepsy who have a cerebral venous angioma require precise analysis of the seizure pattern and an ictal EEG because of cerebral venous angioma may be associated with an another epileptogenic lesion which is surgically treatable.  相似文献   

19.
Early motor manifestations are the main components of focal seizures involving the frontal lobe. We examined the relationship between the initial ictal motor manifestations and interictal abnormalities of cerebral glucose consumption (rCMRGlc) as assessed by PET in 48 consecutive patients with focal seizures of neocortical origin. Group data analysis revealed that patients with predominantly unilateral clonic seizures had a significant contralateral perirolandic hypometabolism and to a lesser degree a contralateral frontomesial hypometabolism. Patients with predominantly focal tonic manifestations showed a hypometabolism within the frontomesial and perirolandic regions that was unilateral in all patients with lateralized tonic seizures. Patients with versive seizures had mainly contralateral metabolic depressions without a consistent regional pattern. Patients with hypermotor seizures had metabolic depressions involving frontomesial, anterior cingulate, perirolandic, and anterior insular/frontal operculum areas. In all patient groups, bilateral and symmetric hypometabolism of the thalamus and cerebellum was observed. We propose that this pattern of distinctly abnormal metabolic brain regions demonstrates not only possible epileptogenic zones but also symptomatogenic brain regions as shown by the associations between clinical manifestations and sets of abnormal brain regions, particularly if epileptogenic zones are in a clinically silent neocortical brain region. The detection and possible differentiation of symptomatogenic and epileptogenic zones might improve the effectiveness of presurgical noninvasive studies.  相似文献   

20.
PURPOSE: An understanding of the principles governing the behavior of complex neuronal networks, in particular their capability of generating epileptic seizures implies the characterization of the conditions under which a transition from the interictal to the ictal state takes place. Signal analysis methods derived from the theory of nonlinear dynamics provide new tools to characterize the behavior of such networks, and are particularly relevant for the analysis of epileptiform activity. METHODS: We calculated the correlation dimension, tested for irreversibility, and made recurrence plots of EEG signals recorded intracranially both during interictal and ictal states in temporal lobe epilepsy patients who were surgical candidates. RESULTS: Epileptic seizure activity often, but not always, emerges as a low-dimensional oscillation. In general, the seizure behaves as a nonstationary phenomenon during which both phases of low and high complexity may occur. Nevertheless a low dimension may be found mainly in the zone of ictal onset and nearby structures. Both the zone of ictal onset and the pattern of propagation of seizure activity in the brain could be identified using this type of analysis. Furthermore, the results obtained were in close agreement with visual inspection of the EEG records. CONCLUSIONS: Application of these mathematical tools provides novel insights into the spatio-temporal dynamics of "epileptic brain states". In this way it may be of practical use in the localization of an epileptogenic region in the brain, and thus be of assistance in the presurgical evaluation of patients with localization-related epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号